Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology
CSE210: Object-Oriented Programming Language
Class Test-3, Marks-20, Time-25 Minutes

Q. Implement the member functions of the following C++ template class.

template<class T>

class matrix{
int row; //number of rows in the matrix
int col; //number of columns in the matrix

T **mat; [ltwo dimensional array should be implemented with pointer and dynamically allocating memory
public:
matrix(int row, int col); /lconstructor of the generic matrix class
~matrix(); /ldestructor of the generic matrix class
matrix(const matrix &m); /lcopy constructor of the generic matrix class
matrix operator +(matrix m2); /1+ operator overloaded for matrix addition
matrix operator -(matrix m2); /- operator overloaded for matrix subtraction
matrix operator *(matrix m2); I1* operator overloaded for matrix multiplication
matrix &operator=(matrix m2); /1= operator overloaded to safely assign one matrix to another matrix
void show(); /ffunction to display the matrix elements in two dimensions
jo
Answer:

#include <iostream>
#include <cstdlib>

using namespace std;

template<class T>
class matrix{
int row;
int col;
T **mat;
public:
matrix(int row, int col);
~matrix();
matrix(const matrix &m);
matrix operator +(matrix m2);
matrix operator -(matrix m2);
matrix operator *(matrix m2);
matrix &operator=(matrix m2);
void show();

1

template<class T>
matrix<T>::matrix(int row, int col){

intij;
this->row=row;
this->col=col;

mat=new T*[row];

for(i=0; i<row; i++){
mat[i]=new T[col];

}
for(i=0;i<row;i++){
for(j=0; j<col; j++){
mat[i][j]=1;

¥

template<class T>

matrix<T>::~matrix(){
delete [Jmat;

}

template<class T>
matrix<T>::matrix(const matrix &m){
intij;
row=m.row;
col=m.col;
mat=new T*[row];
for(i=0;i<row; i++){
mat[i]=new T[col];
}

for(i=0;i<row;i++){
for(j=0;j<col; j++){
mat[i][j]l=m.mat[i][j];
}

¥

template<class T>
matrix<T> matrix<T>::operator+(matrix m2){
matrix<T> temp(row,col);
inti, j;
for(i=0;i<row; i++){
for(j=0; j<col; j++){
temp.mat[i][j]=mat[i][j]+m2.mat[i][j];
}
}

return temp;

¥

template<class T>
matrix<T> matrix<T>::operator - (matrix m2){
matrix<T> temp(row, col);
inti, j;
for(i=0;i<row;i++){
for(j=0;j<col;j++){
temp.mat[i][j]=mat[i][j]-m2.mat[i][j];
}
}

return temp;

¥

template<class T>
matrix<T> matrix<T>::operator *(matrix m2){
matrix<T> temp(row, col);
intij, I
for(i=0;i<row;i++){
for(j=0;j<col;j++){
temp.mat[i][j]=0;
for(1=0;l<col;l++){
temp.mat[i][j]+=mat[i][I]*m2.mat[I][i];
}

¥

return temp;

¥

template<class T>
matrix<T> &matrix<T>::operator = (matrix m2){
inti,j;
for(i=0; i<row; i++){
for(j=0;j<col; j++){
mat[i][j]=m2.mat[i][j];
}
}

return *this;

¥

template<class T>
void matrix<T>::show(){
for(int i=0;i<row;i++){
for(int j=0;j<col; j++){
cout<<mat[i][j]<<"\t";
}

cout<<endl;

¥

void matrix<double>::show(){
for(int i=0;i<row;i++){
for(int j=0;j<col; j++){
printf("%If\t", mat[i][j]);
}

cout<<endl;

int main(){
matrix<int> im1(3,3), im2(3,3), im3(3,3);
im1.show();
im2.show();
im3=im1+im2;
im3.show();
im3=im1-im2;
im3.show();
im3=im1*im2;
im3.show();
matrix<double> dm1(4,4), dm2(4,4), dm3(4,4);
dmZl.show();
dm3=dml+dm2;
dma3.show();
dm3=dm1-dm2;
dma3.show();
dm3=dml*dm?2;
dma3.show();

return O;

