
Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology

CSE210: Object-Oriented Programming Language
Class Test-3, Marks-20, Time-25 Minutes

Q. Implement the member functions of the following C++ template class.

template<class T>
class matrix{

int row; //number of rows in the matrix
int col; //number of columns in the matrix
T **mat; //two dimensional array should be implemented with pointer and dynamically allocating memory
public:

 matrix(int row, int col); //constructor of the generic matrix class
 ~matrix(); //destructor of the generic matrix class
 matrix(const matrix &m); //copy constructor of the generic matrix class
 matrix operator +(matrix m2); //+ operator overloaded for matrix addition
 matrix operator -(matrix m2); //- operator overloaded for matrix subtraction
 matrix operator *(matrix m2); //* operator overloaded for matrix multiplication
 matrix &operator=(matrix m2); //= operator overloaded to safely assign one matrix to another matrix
 void show(); //function to display the matrix elements in two dimensions
};

Answer:

#include <iostream>
#include <cstdlib>

using namespace std;

template<class T>
class matrix{
 int row;
 int col;
 T **mat;
 public:
 matrix(int row, int col);
 ~matrix();
 matrix(const matrix &m);
 matrix operator +(matrix m2);
 matrix operator -(matrix m2);
 matrix operator *(matrix m2);
 matrix &operator=(matrix m2);
 void show();
};

template<class T>
matrix<T>::matrix(int row, int col){
 int i,j;
 this->row=row;
 this->col=col;
 mat=new T*[row];

 for(i=0; i<row; i++){
 mat[i]=new T[col];

 }
 for(i=0;i<row;i++){
 for(j=0; j<col; j++){
 mat[i][j]=1;

 }
 }

}

template<class T>
matrix<T>::~matrix(){
 delete []mat;
}

template<class T>
matrix<T>::matrix(const matrix &m){
 int i,j;
 row=m.row;
 col=m.col;
 mat=new T*[row];
 for(i=0;i<row; i++){
 mat[i]=new T[col];
 }
 for(i=0;i<row;i++){
 for(j=0;j<col; j++){
 mat[i][j]=m.mat[i][j];
 }
 }

}

template<class T>
matrix<T> matrix<T>::operator+(matrix m2){
 matrix<T> temp(row,col);
 int i, j;
 for(i=0;i<row; i++){
 for(j=0; j<col; j++){
 temp.mat[i][j]=mat[i][j]+m2.mat[i][j];
 }
 }
 return temp;
}

template<class T>
matrix<T> matrix<T>::operator - (matrix m2){
 matrix<T> temp(row, col);
 int i, j;
 for(i=0;i<row;i++){
 for(j=0;j<col;j++){
 temp.mat[i][j]=mat[i][j]-m2.mat[i][j];
 }
 }
 return temp;
}

template<class T>
matrix<T> matrix<T>::operator *(matrix m2){
 matrix<T> temp(row, col);
 int i,j, l;
 for(i=0;i<row;i++){
 for(j=0;j<col;j++){
 temp.mat[i][j]=0;
 for(l=0;l<col;l++){
 temp.mat[i][j]+=mat[i][l]*m2.mat[l][i];
 }
 }

 }
 return temp;
}

template<class T>
matrix<T> &matrix<T>::operator = (matrix m2){
 int i,j;
 for(i=0; i<row; i++){
 for(j=0;j<col; j++){
 mat[i][j]=m2.mat[i][j];
 }
 }
 return *this;
}

template<class T>
void matrix<T>::show(){
 for(int i=0;i<row;i++){
 for(int j=0;j<col; j++){
 cout<<mat[i][j]<<"\t";
 }
 cout<<endl;
 }
}

void matrix<double>::show(){
 for(int i=0;i<row;i++){
 for(int j=0;j<col; j++){
 printf("%lf\t",mat[i][j]);
 }
 cout<<endl;
 }
}

int main(){
 matrix<int> im1(3,3), im2(3,3), im3(3,3);
 im1.show();
 im2.show();
 im3=im1+im2;
 im3.show();
 im3=im1-im2;
 im3.show();
 im3=im1*im2;
 im3.show();
 matrix<double> dm1(4,4), dm2(4,4), dm3(4,4);
 dm1.show();
 dm3=dm1+dm2;
 dm3.show();
 dm3=dm1-dm2;
 dm3.show();
 dm3=dm1*dm2;
 dm3.show();

 return 0;
}

