C++ Class and
Object

Dr. Md. Humayun Kabir
CSE Department, BUET

C++ Class
N

C++ Classes are the logical abstraction or model of
C++ Objects

e A Class declaration defines a new type
e It determines what an object of that type will look like
e It determines the nature of the data and functions of

that type

Classes must be defined before creating the objects,
l.e., objects cannot be created without the classes

Definition of a class does not create any physical
objects rather a logical abstraction

5/28/2012 Dr. Md. Humayun Kabir

C++ Class (cont...)
S

Classes are generally declared using the keyword
class

class class name {
access_specifier_1.:
memberl;
member2;
access_specifier_2:
member3;
member4; ...
} object_names;

5/28/2012 Dr. Md. Humayun Kabir

C++ Class (cont...)
S

class CRectangle {
It X, y;
public:
void set_values (int,int);
int area () {return (x*y);}

I3

void CRectangle::set_values (int a, int b) {
X=a;,y=Db;

}

5/28/2012 Dr. Md. Humayun Kabir

C++ ODbjects
S

e C++ Classes are used as the type specifier to create
C++ Objects

CRectangle recta, rectb;

e An object declaration creates a physical entity of its
class type, i.e., occupies memory space

e Each object has its own copy of data and functions

e Data and functions of two objects are independent even
If they are created from the same class

5/28/2012 Dr. Md. Humayun Kabir

Objects Example
S

#include <iostream>
using namespace std;
class CRectangle {
int width, height;
public:
void set_values (int,int);
int area () {return (width*height);}
|3
void CRectangle::set_values (int a, int b) {
width = a; height = b;
}
int main () {
CRectangle recta, rectb;
recta.set_values (3,4);
rectb.set_values (5,6);
cout << "recta area: " <<recta.area() << endl;
cout << "rectb area: " <<rectb.area() << endl;
return 0O;

5/28/2012 Dr. Md. Humayun Kabir

Pointers to classes
]

int main () {
CRectangle a, *b, *c;
CRectangle d[2];
b= new CRectangle;
c= &a;
a.set_values (1,2);
b->set_values (3,4);
d[0]-set_values (5,6);
d[1].set_values (7,8);
cout << "aarea: " << a.area() << endl;
cout << "*p area: " << b->area() << endl;
cout << "*c area: " << c->area() << endl;
cout << "d[0] area: " << d[0].area() << endl;
cout << "d[1] area: " << d[1].area() << endl;
delete b;
return O;

5/28/2012 Dr. Md. Humayun Kabir

Constructor Function
R

#include <iostream>
using namespace std;
class CRectangle {
int width, height;
public:
CRectangle (int,int);
int area () {return (width*height);}
|3
CRectangle::CRectangle (int a, int b) {
width = a; height = b;

}

int main () {
CRectangle recta (3,4);
CRectangle rectb (5,6);
cout << "recta area: " <<recta.area() << endl;
cout << "rectb area: " <<rectb.area() << endl;
return 0O;

}

5/28/2012 Dr. Md. Humayun Kabir

Destructor Function
R

#include <iostream>
using namespace std,;
class CRectangle {
int *width, *height;
public:
CRectangle (int,int);
~CRectangle ();
int area () {return (*width * *height);}

h

CRectangle::CRectangle (int a, int b) {
width = new int;
height = new int;
*width = a;
*height = b;

5/28/2012 Dr. Md. Humayun Kabir

Destructor Function (cont...)
..

CRectangle::~CRectangle () {
delete width;
delete height;

}

iInt main () {
CRectangle recta (3,4), rectb (5,6);
cout << "recta area: " << recta.area() << endl;
cout << "rectb area: " << rectb.area() << endl;
return O;

5/28/2012 Dr. Md. Humayun Kabir

Assigning Objects
S

#include <iostream>
using namespace std;
class CRectangle {
int width, height;
public:
CRectangle (int,int);
int area () {return (width*height);}
|3
CRectangle::CRectangle (int a, int b) {
width = a; height = b;
}
int main () {
CRectangle recta (3,4);
CRectangle rectb (5,6);
rectb=recta;
cout << "recta area: " <<recta.area() << endl;
cout << "rectb area: " <<rectb.area() << endl;
return 0O;

5/28/2012 Dr. Md. Humayun Kabir

Assigning Objects (cont...)
S

#include <iostream>
using namespace std,;
class CRectangle {
int *width, *height;
public:
CRectangle (int,int);
~CRectangle ();
int area () {return (*width * *height);}

h

CRectangle::CRectangle (int a, int b) {
width = new int;
height = new int;
*width = a;
*height = b;

5/28/2012 Dr. Md. Humayun Kabir

Assigning Objects (cont...)
S

CRectangle::~CRectangle () {
delete width;
delete height;

}

iInt main () {
CRectangle recta (3,4);
CRectangle rectb (5,6);
rectb=recta;
cout << "recta area: " << recta.area() << endl;
cout << "rectb area: " << rectb.area() << endl;
return O;

}

5/28/2012 Dr. Md. Humayun Kabir

Objects passing to and returned from
Function

#include <iostream>
using namespace std;
class CRectangle {
int width, height;
public:
CRectangle (int,int);
int area () {return (width*height);}
|3
CRectangle::CRectangle (int a, int b) {
width = a; height = b;
}
CRectangle larger(CRectangle recta, CRectangle rectb){
if(recta.area()>rectb.area())
return recta;
else
return rectb;

5/28/2012 Dr. Md. Humayun Kabir

Objects passing to and returned from
Function (cont...)

int main () {
CRectangle recta (3,4);
CRectangle rectb (5,6);
CRectangle rect_larger(0,0);
rect_larger=larger(recta, rectb);
cout << "recta area: " <<recta.area() << endl;
cout << "rectb area: " <<rectb.area() << endl;
cout << "rect_larger area: " <<rect_larger.area() << endl,

return O;

5/28/2012 Dr. Md. Humayun Kabir

Objects passing to and returned from
Function (cont...)

#include <iostream>
using namespace std,;
class CRectangle {
int *width, *height;
public:
CRectangle (int,int);
~CRectangle ();
int area () {return (*width * *height);}

h

CRectangle::CRectangle (int a, int b) {
width = new int;
height = new int;
*width = a;
*height = b;

5/28/2012 Dr. Md. Humayun Kabir

Objects passing to and returned from
Function (cont...)

CRectangle::~CRectangle () {
delete width;
delete height;

}

CRectangle larger(CRectangle ra, CRectangle rb){
if(ra.area()>rb.area())

return ra;
else
return rb;
}
int main () {
CRectangle recta (3,4), rectb (5,6);
CRectangle rect_larger(0,0);
rect_larger=larger(recta, rectb); //this will cause the program to crash
cout << "recta area: " <<recta.area() << endl;
cout << "rectb area: " <<rectb.area() << endl;
cout << "rect_larger area: " <<rect_larger.area() << endl;
return 0O;
}

5/28/2012 Dr. Md. Humayun Kabir

Friend Function
R

#include <iostream>
using namespace std;
class CRectangle {
int width, height;
public:
CRectangle (int,int);
int area () {return (width*height);}
friend bool isSquare(CRectangle rect);

h

CRectangle::CRectangle (int a, int b) {
width = a; height = b;
}

bool isSquare(CRectangle rect){
retrun rect.width==rect.height? true:false;

}

5/28/2012 Dr. Md. Humayun Kabir

Friend Function
R

int main () {
CRectangle recta (3,4);
CRectangle rectb (5,5);
if(isSquare(recta))
cout<<“rectais a square” <<endl;
if(isSquare(rectb))
cout<<“rectb is a square” <<endl;
cout << '"recta area: " <<recta.area() << endl;
cout << "rectb area: " << rectb.area() << endl,;
return O;

5/28/2012 Dr. Md. Humayun Kabir

Friend Function
R

class Node {
private: int data;
Int key;

friend int BinaryTree::find();
1

5/28/2012 Dr. Md. Humayun Kabir

Friend Function
R

class BinaryTree {
private:
Node *root;
int find(int key);
¥
int BinaryTree::find(int key) {
if(root->key == key) {
return root->data;

5/28/2012 Dr. Md. Humayun Kabir

Friend Class
N

class Node {
private:
int data;
int key;
/...
friend class BinaryTree;

5/28/2012 Dr. Md. Humayun Kabir

Friend Class
N

class BinaryTree {
private:
Node *root;
int find(int key);
bool isNull();
7
int BinaryTree::find(int key) {
if(root->key == key) {
return root->data;

}
}
bool isNull(){

return root->key==NULL? true : false;
}

5/28/2012 Dr. Md. Humayun Kabir

Special Pointer this
.

#include <iostream>
using namespace std;
class CRectangle {
int width, height;
public:
CRectangle (int,int);
int area () {return (width*height);}

};

CRectangle::CRectangle (int width, int height) {
this->width = width; this->height = height;

}

5/28/2012 Dr. Md. Humayun Kabir

Special Pointer this
.

iInt main () {
CRectangle recta (3,4);
CRectangle rectb (5,5);
cout <<"recta area: " <<recta.area() << endl,
cout << "rectb area: " <<rectb.area() << endl;
return O;

5/28/2012 Dr. Md. Humayun Kabir

Special operator new and delete
S

p-var=new type;
delete p-var,;
p-var=new type[10];
delete [] p-var;

e Advantage of new operator over malloc() function call

- Automatically allocates enough memory to hold an object of the
specified type, do not need to use sizeof operator

- Automatically returns a pointer of the specified type, do not to use an
explicit type cast

e On failure new returns either NULL or an exception

5/28/2012 Dr. Md. Humayun Kabir

Special operator new and delete
S

#include <iostream>

using namespace std;

Int main(){
Int *p= new int;
cout<<“Eneter an integer number: “;
cin>>*p;
cout<<“Entered number is <<*p<<endlI;
delete p;
return O;

5/28/2012 Dr. Md. Humayun Kabir

Special operator new and delete
S

#include <iostream>
using namespace std;
Int main(){
int *p=new int(100);
cout<<“Value in the pointer is <<*p<<end]l;
delete p;
return O;

5/28/2012 Dr. Md. Humayun Kabir

Special operator new and delete
S

#include <iostream>
using namespace std;
int main(){
int *p=new int[100];
int i;
for(i=0;i<100;i++){
pli]=i;
}
cout<<*Values in the array are <<endl,
for(i=0;i<100;i++){
cout<<p[i]<<end];
}
delete [] p;
return O;

5/28/2012 Dr. Md. Humayun Kabir

Special operator new and delete
S

#include <iostream>
using namespace std;
class CRectangle {
int width, height;
public:
CRectangle (int,int);
int area () {return (width*height);}

};

CRectangle::CRectangle (int width, int height) {
this->width = width; this->height = height;

}

5/28/2012 Dr. Md. Humayun Kabir

Special operator new and delete
S

Int main(){
CRectangle *rp=new CRectangle(3,4);
cout<<“The area of the rectangle is “<<rp->area()<<endl;
delete rp;
return O;

5/28/2012 Dr. Md. Humayun Kabir

Array of Objects
S

#include <iostream>
using namespace std;
class Circle{
double rad;
public:
void setRad(double r){rad=r;}
double area(){return 3.14*rad*rad;}

int main(){
Circle crls[2];
crls[0].setRad(7.44);
crls[1].setRad(3.65);
cout<<“The area of the first circle is “<<crls[0].area()<<end];
cout<<“The area of the second circle is “<<crls[1].area()<<endl;
return 0O;

5/28/2012 Dr. Md. Humayun Kabir

Array of Objects
S

#include <iostream>
using namespace std;
class Circle{
double rad;
public:
void setRad(double r){rad=r;}
double area(){return 3.14*rad*rad;}

}

int main(){
Circle *crls=new Circle[2];
crls[0].setRad(7.44);
crls[1].setRad(3.65);
cout<<“The area of the first circle is “<<crls[0].area()<<end];
cout<<“The area of the second circle is “<<crls[1].area()<<endl;
delete [] crls;
return O;

5/28/2012 Dr. Md. Humayun Kabir

Array of Objects
S

#include <iostream>
using namespace std,;
class Circle{
double rad;
public:
Circle(double r){rad=r;}
double area(){return 3.14*rad*rad;}

}

int main(){
Circle crls[2]={7.44, 3.65};
cout<<“The area of the first circle is “<<crls[0].area()<<endl;
cout<<“The area of the second circle is “<<crls[1].area()<<endlI;
return O;

}

5/28/2012 Dr. Md. Humayun Kabir

Array of Objects
S

#include <iostream>
using namespace std;
class Circle{
double rad;
double x;
doubley;
public:
Circle(double r, double x, double y){rad=r; this->x=x; this->y=y;}
double area(){return 3.14*rad*rad;}

}

int main(){
Circle cris[2]={Circle(7.44, 0.0, 0.0), Circle(3.65, 0.5, 2.5)};
cout<<“The area of the first circle is “<<crls[0].area()<<end];
cout<<“The area of the second circle is “<<crls[1].area()<<endl;
return 0O;

}

5/28/2012 Dr. Md. Humayun Kabir

Reference
]

#include <iostream>

using namespace std;

void swapargs (int x, int y){
int t;
t=X;X=y,;y=t,;

}

int main(){
inti,j;
1=20; j=40;
cout<<"i="<<i<<", “<<j<<endl;
swapargs(i,j); /lwill not swap the values
cout<<"i="<<i<<", “<<j<<endl;
return O;

5/28/2012 Dr. Md. Humayun Kabir

Reference
]

#include <iostream>

using namespace std;

void swapargs (int *x, int *y){
int t;
t:*X;*X:*y;*y:t;

}

int main(){
inti,j;
1=20; j=40;
cout<<"i="<<i<<", “<<j<<endl;
swapargs(&i,&j);
cout<<"i="<<i<<" | “<<j<<endl;
return O;

5/28/2012 Dr. Md. Humayun Kabir

Reference
]

#include <iostream>

using namespace std;

void swapargs (int &x, int &y){
int t;
t=X;X=y,;y=t,;

}

int main(){
inti,j;
1=20; j=40;
cout<<"i="<<i<<", “<<j<<endl;
swapargs(i,j);
cout<<"i="<<i<<" | “<<j<<endl;
return O;

5/28/2012 Dr. Md. Humayun Kabir

Passing Reference to Function
.

#include <iostream>
using namespace std,;
class Circle{
double rad;
public:
void setRad(double r){rad=r;}
double getRad()(return rad;}
double area(){return 3.14*rad*rad;}

h

ie

;UO

Cl
C. setRad(c get
}
int main(){
Circle c;
c.setRad(2.7);
cout<<“The area of the circle is “<<c.area()<<endl,;
expand(c,1.5); //will not change the circle
cout<<“The area of the circle is “<<c.area()<<endl,;
return O;

5/28/2012 Dr. Md. Humayun Kabir

Passing Reference to Function
.

#include <iostream>
using namespace std,;
class Circle{
double rad;
public:
void setRad(double r){rad=r;}
double getRad()(return rad;}
double area(){return 3.14*rad*rad;}
}
void expand(Circle *c, double e){

c->setRad(c->getRad()*e);

@

}

int main(){
Circle c;
c.setRad(2.7);
cout<<“The area of the circle is “<<c.area()<<endl,;
expand(&c,1.5);
cout<<“The area of the circle is “<<c.area()<<endl,;
return O;

5/28/2012 Dr. Md. Humayun Kabir

Passing Reference to Function
.

#include <iostream>
using namespace std,;
class Circle{
double rad;
public:
void setRad(double r){rad=r;}
double getRad()(return rad;}
double area(){return 3.14*rad*rad;}

h

}

int main(){
Circle c;
c.setRad(2.7);
cout<<“The area of the circle is “<<c.area()<<endl,;
expand(c,1.5);
cout<<“The area of the circle is “<<c.area()<<endl,;
return O;

5/28/2012 Dr. Md. Humayun Kabir

Passing Reference to Function
.

#include <iostream>
using namespace std;
class Circle{
double *rad;
public:
Circle(double r){rad=new double; *rad=r; cout<<“Constructing.....”<<endl;}
~Circle(){delete rad; cout<<*Destructing.....”<<endl;}
void setRad(double r){*rad=r;}
double getRad()(return *rad;}

doubhle area\retiuirn 2. 14*(*radY*(*rad):!
uuuuuuuuuu oreturn s.14%("rad)*("raaq);

|3

void expand(Circle c, double e){
c.setRad(c.getRad()*e);

}

int main(){
Circle c(2.7);
cout<<“The area of the circle is “<<c.area()<<endl;
expand(c,1.5);
cout<<“The area of the circle is “<<c.area()<<endl,
return O;

5/28/2012 Dr. Md. Humayun Kabir

Passing Reference to Function
.

#include <iostream>
using namespace std;
class Circle{
double *rad;
public:
Circle(double r){rad=new double; *rad=r; cout<<“Constructing.....”<<endl;}
~Circle(){delete rad; cout<<*Destructing.....”<<endl;}
void setRad(double r){*rad=r;}
double getRad()(return *rad;}

doubhle area\retiuirn 2. 14*(*radY*(*rad):!
uuuuuuuuuu oreturn s.14%("rad)*("raaq);

|3

void expand(Circle &c, double e){
c.setRad(c.getRad()*e);

}

int main(){
Circle c(2.7);
cout<<“The area of the circle is “<<c.area()<<endl;
expand(c,1.5);
cout<<“The area of the circle is “<<c.area()<<endl,
return O;

5/28/2012 Dr. Md. Humayun Kabir

Returning Reference from Function
o

#include <iostream>
using namespace std;
Int X;

Int &xref(){
return x;

}

Int main(){
xref()=100;
cout<<*x=“<<x<<endl;
return O;

}

5/28/2012 Dr. Md. Humayun Kabir

cout<<*Thank You”’<<endl:
c -]

cout<<*Have a Good Day’<<end];

5/28/2012 Dr. Md. Humayun Kabir

