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C++ Class

C++ Classes are the logical abstraction or model ofC++ Classes are the logical abstraction  or model of 
C++ Objects
A Class declaration defines a new typeyp
It determines what an object of that type will look like
It determines the nature of the data and functions of 
that type
Classes must be defined before creating the objects, 
i e objects cannot be created without the classesi.e., objects cannot be created without the classes
Definition of a class does not create any physical 
objects rather a logical abstraction
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C++ Class (cont…)( )

Classes are generally declared using the keywordClasses are generally declared using the keyword 
class

class class_name { _ {
access_specifier_1: 

member1; 
b 2member2;

access_specifier_2: 
member3;member3;
member4; ... 

} object_names; 
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C++ Class (cont…)( )

class CRectangle {class CRectangle { 
int x, y; 
public:public: 

void set_values (int,int); 
int area () {return (x*y);} () { ( y);}

}; 
void CRectangle::set_values (int a, int b) {g ( ) {

x = a; y = b; 
} 

5/28/2012 Dr. Md. Humayun Kabir4



C++ Objectsj

C++ Classes are used as the type specifier to createC++ Classes are used as the type specifier to create 
C++ Objects

CRectangle recta rectb;CRectangle recta, rectb; 
An object declaration creates a physical entity of its 
class type, i.e., occupies memory spaceclass type, i.e., occupies memory space
Each object has its own copy of data and functions
Data and functions of two objects are independent evenData and functions of two objects are independent even 
if they are created from the same class
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Objects Examplej p

#include <iostream>
using namespace std; 
class CRectangle { 

int width, height; 
public: 

void set_values (int,int); 
int area () {return (width*height);} 

}; 
void CRectangle::set_values (int a, int b) { 

width = a; height = b; 
} 
int main () { 

CRectangle recta, rectb; 
recta.set_values (3,4); 
rectb.set_values (5,6); 
cout << "recta area: " << recta.area() << endl; 
cout << "rectb area: " << rectb.area() << endl; 
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return 0; 

} 



Pointers to classes

int main () { () {
CRectangle a, *b, *c; 
CRectangle d[2]; 
b= new CRectangle; 
c= &a; 
a.set_values (1,2); 
b->set_values (3,4); 
d[0]-set_values (5,6); 
d[1].set_values (7,8); 
cout << "a area: " << a.area() << endl; 
cout << "*b area: " << b->area() << endl; 
cout << "*c area: " << c->area() << endl; 
cout << "d[0] area: " << d[0].area() << endl; 
cout << "d[1] area: " << d[1].area() << endl; 
delete b; 
return 0; 

} 
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Constructor Function

#include <iostream>
using namespace std; 
class CRectangle { 

int width, height; 
public: 

CRectangle (int,int); 
int area () {return (width*height);} 

}; 
CRectangle::CRectangle (int a, int b) { 

width = a; height = b; 
} 
int main () { 

CRectangle recta (3,4); 
CRectangle rectb (5,6); 
cout << "recta area: " << recta.area() << endl; 
cout << "rectb area: " << rectb.area() << endl; 
return 0; 
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Destructor Function

#include <iostream>
using namespace std; 
class CRectangle { 

int *width, *height; 
public:public: 

CRectangle (int,int); 
~CRectangle (); 
int area () {return (*width * *height);} () { ( g );}

}; 

CRectangle::CRectangle (int a, int b) {
width = new int;width = new int; 
height = new int; 
*width = a; 
*height = b; 
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Destructor Function (cont…)( )

CRectangle::~CRectangle () {CRectangle:: CRectangle () { 
delete width;
delete height; 

}} 

int main () { 
CR t l t (3 4) tb (5 6)CRectangle recta (3,4), rectb (5,6); 
cout << "recta area: " << recta.area() << endl; 
cout << "rectb area: " << rectb.area() << endl; 
return 0; 

} 
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Assigning Objectsg g j

#include <iostream>
using namespace std; 
class CRectangle { 

int width, height; 
public: 

CRectangle (int,int); 
int area () {return (width*height);} 

}; 
CRectangle::CRectangle (int a, int b) { 

width = a; height = b; 
} 
int main () { 

CRectangle recta (3,4); 
CRectangle rectb (5,6); 
rectb=recta;
cout << "recta area: " << recta.area() << endl; 
cout << "rectb area: " << rectb.area() << endl; 
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return 0; 

} 



Assigning Objects (cont…)g g j ( )

#include <iostream>
using namespace std; 
class CRectangle { 

int *width, *height; 
public:public: 

CRectangle (int,int); 
~CRectangle (); 
int area () {return (*width * *height);} () { ( g );}

}; 

CRectangle::CRectangle (int a, int b) {
width = new int;width = new int; 
height = new int; 
*width = a; 
*height = b; 
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Assigning Objects (cont…)g g j ( )

CRectangle::~CRectangle () {CRectangle:: CRectangle () { 
delete width;
delete height; 

}} 

int main () { 
CR t l t (3 4)CRectangle recta (3,4);
CRectangle rectb (5,6); 
rectb=recta;
cout << "recta area: " << recta.area() << endl; 
cout << "rectb area: " << rectb.area() << endl; 
return 0; 
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Objects passing to and returned from 
Function

#include <iostream>
using namespace std; 
class CRectangle { 

int width, height; 
public: 

CRectangle (int,int); 
int area () {return (width*height);} 

}; 
CRectangle::CRectangle (int a, int b) { 

width = a; height = b; 
} 
CRectangle larger(CRectangle recta, CRectangle rectb){

if(recta.area()>rectb.area())
return recta;

else
return rectb;

}
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Objects passing to and returned from 
Function (cont…)( )

int main () { () {
CRectangle recta (3,4); 
CRectangle rectb (5,6); 
CRectangle rect_larger(0,0);
rect_larger=larger(recta, rectb);g g ( )
cout << "recta area: " << recta.area() << endl; 
cout << "rectb area: " << rectb.area() << endl; 
cout << "rect_larger area: " << rect_larger.area() << endl; 

return 0; 
} 
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Objects passing to and returned from 
Function (cont…)( )

#include <iostream>
using namespace std; 
class CRectangle { 

int *width, *height; 
public:public: 

CRectangle (int,int); 
~CRectangle (); 
int area () {return (*width * *height);} () { ( g );}

}; 

CRectangle::CRectangle (int a, int b) {
width = new int;width = new int; 
height = new int; 
*width = a; 
*height = b; 
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Objects passing to and returned from 
Function (cont…)( )

CRectangle::~CRectangle () { g g () {
delete width;
delete height; 

} 
CRectangle larger(CRectangle ra, CRectangle rb){g g ( g g ){

if(ra.area()>rb.area())
return ra;

else
return rb;

}
int main () { 

CRectangle recta (3,4), rectb (5,6); 
CRectangle rect_larger(0,0);
rect_larger=larger(recta, rectb); //this will cause the program to crash
cout << "recta area: " << recta.area() << endl; 
cout << "rectb area: " << rectb.area() << endl; 
cout << "rect_larger area: " << rect_larger.area() << endl; 
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return 0; 

} 



Friend Function

#include <iostream>
using namespace std; 
class CRectangle { 

int width, height; 
public: 

CRectangle (int,int); 
int area () {return (width*height);} 
friend bool isSquare(CRectangle rect);

}; 

CRectangle::CRectangle (int a, int b) { 
width = a; height = b; 

} 

bool isSquare(CRectangle rect){
retrun rect.width==rect.height? true:false;

}
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Friend Function

int main () { 
CRectangle recta (3,4); 
CRectangle rectb (5,5); 
if(isSquare(recta))

cout<<“recta is a square”<<endl;q ;
if(isSquare(rectb))

cout<<“rectb is a square”<<endl;
co t << "recta area " << recta area() << endlcout << "recta area: " << recta.area() << endl; 
cout << "rectb area: " << rectb.area() << endl; 
return 0; 
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Friend Function

class Node {class Node { 
private: int data; 
int key; 
// ...// ... 
friend int BinaryTree::find(); 
};};
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Friend Function

class BinaryTree {class BinaryTree { 
private: 
Node *root; 
int find(int key);int find(int key); 

}; 
int BinaryTree::find(int key) { 

if( t >k k ) {if(root->key == key) { 
return root->data; 

}
…………
…………

} 
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Friend Class

class Node {class Node { 
private: 
int data; 
int key;int key; 
// ... 
friend class BinaryTree;friend class BinaryTree;

}; 
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Friend Class

class BinaryTree { y {
private: 
Node *root; 
int find(int key); 
bool isNull();bool isNull();

}; 
int BinaryTree::find(int key) { 

if(root->key == key) { ( y y) {
return root->data; 

}
…………

}} 
bool isNull(){

return root->key==NULL? true : false;
}
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Special Pointer thisp

#include <iostream>#include <iostream>
using namespace std; 
class CRectangle { 

int width height;int width, height; 
public: 

CRectangle (int,int); 
i t () { t ( idth*h i ht) }int area () {return (width*height);} 

}; 

CRectangle::CRectangle (int width, int height) { 
this->width = width; this->height = height; 

} 
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Special Pointer thisp

int main () {int main () { 
CRectangle recta (3,4); 
CRectangle rectb (5 5);CRectangle rectb (5,5); 

cout << "recta area: " << recta.area() << endl; 
t << " tb " << tb () << dlcout << "rectb area: " << rectb.area() << endl; 

return 0; 
}} 
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Special operator new and delete p p

p var=new type;p-var=new type;
delete p-var;
p-var=new type[10];p yp [ ]
delete [] p-var;

Advantage of new operator over malloc() function call
– Automatically allocates enough memory to hold an object of the 

specified type, do not need to use sizeof operator
– Automatically returns a pointer of the specified type, do not to use an 

explicit type cast
On failure new returns either NULL or an exception
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On failure new returns either NULL or an exception



Special operator new and delete p p

#include <iostream>#include <iostream>
using namespace std;
int main(){(){

int *p= new int;
cout<<“Eneter an integer number: “;
cin>>*p;
cout<<“Entered number is <<*p<<endl;
delete p;delete p;
return 0;

}
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Special operator new and delete p p

#include <iostream>#include <iostream>
using namespace std;
int main(){(){

int *p= new int(100);
cout<<“Value in the pointer is <<*p<<endl;
delete p;
return 0;

}}
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Special operator new and delete p p

#include <iostream>
using namespace std;
int main(){

int *p= new int[100];
int i;int i;
for(i=0;i<100;i++){

p[i]=i;
}}
cout<<“Values in the array are <<endl;
for(i=0;i<100;i++){

cout<<p[i]<<endl;
}}
delete [] p;
return 0;

}
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Special operator new and delete p p

#include <iostream>#include <iostream>
using namespace std; 
class CRectangle { 

int width height;int width, height; 
public: 

CRectangle (int,int); 
i t () { t ( idth*h i ht) }int area () {return (width*height);} 

}; 

CRectangle::CRectangle (int width, int height) { 
this->width = width; this->height = height; 

} 
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Special operator new and delete p p

int main(){int main(){
CRectangle *rp=new CRectangle(3,4);
cout<<“The area of the rectangle is “<<rp->area()<<endl;g p ()
delete rp;
return 0;

}
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Array of Objectsy j

#include <iostream>
using namespace std;
class Circle{

double rad;
public:

void setRad(double r){rad=r;}
double area(){return 3.14*rad*rad;}

}

int main(){
Circle crls[2];
crls[0].setRad(7.44);
crls[1].setRad(3.65);
cout<<“The area of the first circle is “<<crls[0].area()<<endl;
cout<<“The area of the second circle is “<<crls[1].area()<<endl;
return 0;
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Array of Objectsy j

#include <iostream>
using namespace std;
class Circle{

double rad;
public:

void setRad(double r){rad=r;}
double area(){return 3.14*rad*rad;}

}

int main(){
Circle *crls=new Circle[2];
crls[0].setRad(7.44);
crls[1].setRad(3.65);
cout<<“The area of the first circle is “<<crls[0].area()<<endl;
cout<<“The area of the second circle is “<<crls[1].area()<<endl;
delete [] crls;
return 0;
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Array of Objectsy j

#include <iostream>
using namespace std;
class Circle{

double rad;
public:public:

Circle(double r){rad=r;}
double area(){return 3.14*rad*rad;}

}}

int main(){
Circle crls[2]={7 44 3 65};Circle crls[2]={7.44, 3.65}; 
cout<<“The area of the first circle is “<<crls[0].area()<<endl;
cout<<“The area of the second circle is “<<crls[1].area()<<endl;
return 0;
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Array of Objectsy j

#include <iostream>
using namespace std;
class Circle{

double rad;
double x;
double y;
public:

Circle(double r, double x, double y){rad=r; this->x=x; this->y=y;}
double area(){return 3.14*rad*rad;}

}

int main(){
Circle crls[2]={Circle(7.44, 0.0, 0.0), Circle(3.65, 0.5, 2.5)}; 
cout<<“The area of the first circle is “<<crls[0].area()<<endl;
cout<<“The area of the second circle is “<<crls[1].area()<<endl;
return 0;

}

5/28/2012 Dr. Md. Humayun Kabir35



Reference

#include <iostream>#include iostream
using namespace std;
void swapargs (int x, int y){

int t;;
t=x;x=y;y=t;

}
int main(){

int i, j;
i=20; j=40;
cout<<“i=”<<i<<“, “<<j<<endl;
swapargs(i,j);          //will not swap the values
cout<<“i=”<<i<<“, “<<j<<endl;
return 0;

}
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Reference

#include <iostream>#include iostream
using namespace std;
void swapargs (int *x, int *y){

int t;;
t=*x;*x=*y;*y=t;

}
int main(){

int i, j;
i=20; j=40;
cout<<“i=”<<i<<“, “<<j<<endl;
swapargs(&i,&j);
cout<<“i=”<<i<<“, “<<j<<endl;
return 0;

}
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Reference

#include <iostream>#include iostream
using namespace std;
void swapargs (int &x, int &y){

int t;;
t=x;x=y;y=t;

}
int main(){

int i, j;
i=20; j=40;
cout<<“i=”<<i<<“, “<<j<<endl;
swapargs(i,j);
cout<<“i=”<<i<<“, “<<j<<endl;
return 0;

}
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Passing Reference to Functiong

#include <iostream>
using namespace std;
class Circle{

double rad;
public:

void setRad(double r){rad=r;}void setRad(double r){rad r;}
double getRad()(return rad;}
double area(){return 3.14*rad*rad;}

};

void expand(Circle c double e){void expand(Circle c, double e){
c.setRad(c.getRad()*e);

}
int main(){

Circle c;
c.setRad(2.7);
cout<<“The area of the circle is “<<c.area()<<endl;
expand(c,1.5); //will not change the circle
cout<<“The area of the circle is “<<c.area()<<endl;
return 0;
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Passing Reference to Functiong

#include <iostream>
using namespace std;
class Circle{

double rad;
public:

void setRad(double r){rad=r;}void setRad(double r){rad r;}
double getRad()(return rad;}
double area(){return 3.14*rad*rad;}

};

void expand(Circle *c double e){void expand(Circle *c, double e){
c->setRad(c->getRad()*e);

}
int main(){

Circle c;
c.setRad(2.7);
cout<<“The area of the circle is “<<c.area()<<endl;
expand(&c,1.5);
cout<<“The area of the circle is “<<c.area()<<endl;
return 0;
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Passing Reference to Functiong

#include <iostream>
using namespace std;
class Circle{

double rad;
public:

void setRad(double r){rad=r;}void setRad(double r){rad r;}
double getRad()(return rad;}
double area(){return 3.14*rad*rad;}

};

void expand(Circle &c double e){void expand(Circle &c, double e){
c.setRad(c.getRad()*e);

}
int main(){

Circle c;
c.setRad(2.7);
cout<<“The area of the circle is “<<c.area()<<endl;
expand(c,1.5);
cout<<“The area of the circle is “<<c.area()<<endl;
return 0;
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Passing Reference to Functiong

#include <iostream>
using namespace std;
class Circle{

double *rad;
public:

Ci l (d bl ){ d d bl * d t<<“C t ti ”<< dl }Circle(double r){rad=new double; *rad=r; cout<<“Constructing…..”<<endl;}
~Circle(){delete rad; cout<<“Destructing…..”<<endl;}
void setRad(double r){*rad=r;}
double getRad()(return *rad;}
double area(){return 3 14*(*rad)*(*rad);}double area(){return 3.14 ( rad) ( rad);}

};
void expand(Circle c, double e){

c.setRad(c.getRad()*e);
}
int main(){

Circle c(2.7);
cout<<“The area of the circle is “<<c.area()<<endl;
expand(c,1.5);

t<<“Th f th i l i “<< ()<< dl
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cout<<“The area of the circle is “<<c.area()<<endl;
return 0;

}



Passing Reference to Functiong

#include <iostream>
using namespace std;
class Circle{

double *rad;
public:

Ci l (d bl ){ d d bl * d t<<“C t ti ”<< dl }Circle(double r){rad=new double; *rad=r; cout<<“Constructing…..”<<endl;}
~Circle(){delete rad; cout<<“Destructing…..”<<endl;}
void setRad(double r){*rad=r;}
double getRad()(return *rad;}
double area(){return 3 14*(*rad)*(*rad);}double area(){return 3.14 ( rad) ( rad);}

};
void expand(Circle &c, double e){

c.setRad(c.getRad()*e);
}
int main(){

Circle c(2.7);
cout<<“The area of the circle is “<<c.area()<<endl;
expand(c,1.5);

t<<“Th f th i l i “<< ()<< dl
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cout<<“The area of the circle is “<<c.area()<<endl;
return 0;

}



Returning Reference from Functiong

#include <iostream>#include <iostream>
using namespace std;
int x;

int &xref(){
return x;

}}

int main(){
xref()=100;
cout<<“x= “<<x<<endl;
return 0;
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cout<<“Thank You”<<endl;;

cout<<“Have a Good Day”<<endl;cout Have a Good Day endl;
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