
C++ Class andC Class and
ObjectObject

Dr. Md. Humayun Kabir
CSE Department, BUET

C++ Class

C++ Classes are the logical abstraction or model ofC++ Classes are the logical abstraction or model of
C++ Objects
A Class declaration defines a new typeyp
It determines what an object of that type will look like
It determines the nature of the data and functions of
that type
Classes must be defined before creating the objects,
i e objects cannot be created without the classesi.e., objects cannot be created without the classes
Definition of a class does not create any physical
objects rather a logical abstraction

5/28/2012 Dr. Md. Humayun Kabir2

j g

C++ Class (cont…)()

Classes are generally declared using the keywordClasses are generally declared using the keyword
class

class class_name { _ {
access_specifier_1:

member1;
b 2member2;

access_specifier_2:
member3;member3;
member4; ...

} object_names;

5/28/2012 Dr. Md. Humayun Kabir3

} j _

C++ Class (cont…)()

class CRectangle {class CRectangle {
int x, y;
public:public:

void set_values (int,int);
int area () {return (x*y);} () { (y);}

};
void CRectangle::set_values (int a, int b) {g () {

x = a; y = b;
}

5/28/2012 Dr. Md. Humayun Kabir4

C++ Objectsj

C++ Classes are used as the type specifier to createC++ Classes are used as the type specifier to create
C++ Objects

CRectangle recta rectb;CRectangle recta, rectb;
An object declaration creates a physical entity of its
class type, i.e., occupies memory spaceclass type, i.e., occupies memory space
Each object has its own copy of data and functions
Data and functions of two objects are independent evenData and functions of two objects are independent even
if they are created from the same class

5/28/2012 Dr. Md. Humayun Kabir5

Objects Examplej p

#include <iostream>
using namespace std;
class CRectangle {

int width, height;
public:

void set_values (int,int);
int area () {return (width*height);}

};
void CRectangle::set_values (int a, int b) {

width = a; height = b;
}
int main () {

CRectangle recta, rectb;
recta.set_values (3,4);
rectb.set_values (5,6);
cout << "recta area: " << recta.area() << endl;
cout << "rectb area: " << rectb.area() << endl;

5/28/2012 Dr. Md. Humayun Kabir6
return 0;

}

Pointers to classes

int main () { () {
CRectangle a, *b, *c;
CRectangle d[2];
b= new CRectangle;
c= &a;
a.set_values (1,2);
b->set_values (3,4);
d[0]-set_values (5,6);
d[1].set_values (7,8);
cout << "a area: " << a.area() << endl;
cout << "*b area: " << b->area() << endl;
cout << "*c area: " << c->area() << endl;
cout << "d[0] area: " << d[0].area() << endl;
cout << "d[1] area: " << d[1].area() << endl;
delete b;
return 0;

}

5/28/2012 Dr. Md. Humayun Kabir7

Constructor Function

#include <iostream>
using namespace std;
class CRectangle {

int width, height;
public:

CRectangle (int,int);
int area () {return (width*height);}

};
CRectangle::CRectangle (int a, int b) {

width = a; height = b;
}
int main () {

CRectangle recta (3,4);
CRectangle rectb (5,6);
cout << "recta area: " << recta.area() << endl;
cout << "rectb area: " << rectb.area() << endl;
return 0;

5/28/2012 Dr. Md. Humayun Kabir8
}

Destructor Function

#include <iostream>
using namespace std;
class CRectangle {

int *width, *height;
public:public:

CRectangle (int,int);
~CRectangle ();
int area () {return (*width * *height);} () { (g);}

};

CRectangle::CRectangle (int a, int b) {
width = new int;width = new int;
height = new int;
*width = a;
*height = b;

5/28/2012 Dr. Md. Humayun Kabir9

g ;
}

Destructor Function (cont…)()

CRectangle::~CRectangle () {CRectangle:: CRectangle () {
delete width;
delete height;

}}

int main () {
CR t l t (3 4) tb (5 6)CRectangle recta (3,4), rectb (5,6);
cout << "recta area: " << recta.area() << endl;
cout << "rectb area: " << rectb.area() << endl;
return 0;

}

5/28/2012 Dr. Md. Humayun Kabir10

Assigning Objectsg g j

#include <iostream>
using namespace std;
class CRectangle {

int width, height;
public:

CRectangle (int,int);
int area () {return (width*height);}

};
CRectangle::CRectangle (int a, int b) {

width = a; height = b;
}
int main () {

CRectangle recta (3,4);
CRectangle rectb (5,6);
rectb=recta;
cout << "recta area: " << recta.area() << endl;
cout << "rectb area: " << rectb.area() << endl;

5/28/2012 Dr. Md. Humayun Kabir11
return 0;

}

Assigning Objects (cont…)g g j ()

#include <iostream>
using namespace std;
class CRectangle {

int *width, *height;
public:public:

CRectangle (int,int);
~CRectangle ();
int area () {return (*width * *height);} () { (g);}

};

CRectangle::CRectangle (int a, int b) {
width = new int;width = new int;
height = new int;
*width = a;
*height = b;

5/28/2012 Dr. Md. Humayun Kabir12

g ;
}

Assigning Objects (cont…)g g j ()

CRectangle::~CRectangle () {CRectangle:: CRectangle () {
delete width;
delete height;

}}

int main () {
CR t l t (3 4)CRectangle recta (3,4);
CRectangle rectb (5,6);
rectb=recta;
cout << "recta area: " << recta.area() << endl;
cout << "rectb area: " << rectb.area() << endl;
return 0;

5/28/2012 Dr. Md. Humayun Kabir13
}

Objects passing to and returned from
Function

#include <iostream>
using namespace std;
class CRectangle {

int width, height;
public:

CRectangle (int,int);
int area () {return (width*height);}

};
CRectangle::CRectangle (int a, int b) {

width = a; height = b;
}
CRectangle larger(CRectangle recta, CRectangle rectb){

if(recta.area()>rectb.area())
return recta;

else
return rectb;

}

5/28/2012 Dr. Md. Humayun Kabir14

Objects passing to and returned from
Function (cont…)()

int main () { () {
CRectangle recta (3,4);
CRectangle rectb (5,6);
CRectangle rect_larger(0,0);
rect_larger=larger(recta, rectb);g g ()
cout << "recta area: " << recta.area() << endl;
cout << "rectb area: " << rectb.area() << endl;
cout << "rect_larger area: " << rect_larger.area() << endl;

return 0;
}

5/28/2012 Dr. Md. Humayun Kabir15

Objects passing to and returned from
Function (cont…)()

#include <iostream>
using namespace std;
class CRectangle {

int *width, *height;
public:public:

CRectangle (int,int);
~CRectangle ();
int area () {return (*width * *height);} () { (g);}

};

CRectangle::CRectangle (int a, int b) {
width = new int;width = new int;
height = new int;
*width = a;
*height = b;

5/28/2012 Dr. Md. Humayun Kabir16

g ;
}

Objects passing to and returned from
Function (cont…)()

CRectangle::~CRectangle () { g g () {
delete width;
delete height;

}
CRectangle larger(CRectangle ra, CRectangle rb){g g (g g){

if(ra.area()>rb.area())
return ra;

else
return rb;

}
int main () {

CRectangle recta (3,4), rectb (5,6);
CRectangle rect_larger(0,0);
rect_larger=larger(recta, rectb); //this will cause the program to crash
cout << "recta area: " << recta.area() << endl;
cout << "rectb area: " << rectb.area() << endl;
cout << "rect_larger area: " << rect_larger.area() << endl;

5/28/2012 Dr. Md. Humayun Kabir17
return 0;

}

Friend Function

#include <iostream>
using namespace std;
class CRectangle {

int width, height;
public:

CRectangle (int,int);
int area () {return (width*height);}
friend bool isSquare(CRectangle rect);

};

CRectangle::CRectangle (int a, int b) {
width = a; height = b;

}

bool isSquare(CRectangle rect){
retrun rect.width==rect.height? true:false;

}

5/28/2012 Dr. Md. Humayun Kabir18

Friend Function

int main () {
CRectangle recta (3,4);
CRectangle rectb (5,5);
if(isSquare(recta))

cout<<“recta is a square”<<endl;q ;
if(isSquare(rectb))

cout<<“rectb is a square”<<endl;
co t << "recta area " << recta area() << endlcout << "recta area: " << recta.area() << endl;
cout << "rectb area: " << rectb.area() << endl;
return 0;

5/28/2012 Dr. Md. Humayun Kabir19
}

Friend Function

class Node {class Node {
private: int data;
int key;
// ...// ...
friend int BinaryTree::find();
};};

5/28/2012 Dr. Md. Humayun Kabir20

Friend Function

class BinaryTree {class BinaryTree {
private:
Node *root;
int find(int key);int find(int key);

};
int BinaryTree::find(int key) {

if(t >k k) {if(root->key == key) {
return root->data;

}
…………
…………

}

5/28/2012 Dr. Md. Humayun Kabir21

Friend Class

class Node {class Node {
private:
int data;
int key;int key;
// ...
friend class BinaryTree;friend class BinaryTree;

};

5/28/2012 Dr. Md. Humayun Kabir22

Friend Class

class BinaryTree { y {
private:
Node *root;
int find(int key);
bool isNull();bool isNull();

};
int BinaryTree::find(int key) {

if(root->key == key) { (y y) {
return root->data;

}
…………

}}
bool isNull(){

return root->key==NULL? true : false;
}

5/28/2012 Dr. Md. Humayun Kabir23

}

Special Pointer thisp

#include <iostream>#include <iostream>
using namespace std;
class CRectangle {

int width height;int width, height;
public:

CRectangle (int,int);
i t () { t (idth*h i ht) }int area () {return (width*height);}

};

CRectangle::CRectangle (int width, int height) {
this->width = width; this->height = height;

}

5/28/2012 Dr. Md. Humayun Kabir24

Special Pointer thisp

int main () {int main () {
CRectangle recta (3,4);
CRectangle rectb (5 5);CRectangle rectb (5,5);

cout << "recta area: " << recta.area() << endl;
t << " tb " << tb () << dlcout << "rectb area: " << rectb.area() << endl;

return 0;
}}

5/28/2012 Dr. Md. Humayun Kabir25

Special operator new and delete p p

p var=new type;p-var=new type;
delete p-var;
p-var=new type[10];p yp []
delete [] p-var;

Advantage of new operator over malloc() function call
– Automatically allocates enough memory to hold an object of the

specified type, do not need to use sizeof operator
– Automatically returns a pointer of the specified type, do not to use an

explicit type cast
On failure new returns either NULL or an exception

5/28/2012 Dr. Md. Humayun Kabir26
On failure new returns either NULL or an exception

Special operator new and delete p p

#include <iostream>#include <iostream>
using namespace std;
int main(){(){

int *p= new int;
cout<<“Eneter an integer number: “;
cin>>*p;
cout<<“Entered number is <<*p<<endl;
delete p;delete p;
return 0;

}

5/28/2012 Dr. Md. Humayun Kabir27

Special operator new and delete p p

#include <iostream>#include <iostream>
using namespace std;
int main(){(){

int *p= new int(100);
cout<<“Value in the pointer is <<*p<<endl;
delete p;
return 0;

}}

5/28/2012 Dr. Md. Humayun Kabir28

Special operator new and delete p p

#include <iostream>
using namespace std;
int main(){

int *p= new int[100];
int i;int i;
for(i=0;i<100;i++){

p[i]=i;
}}
cout<<“Values in the array are <<endl;
for(i=0;i<100;i++){

cout<<p[i]<<endl;
}}
delete [] p;
return 0;

}

5/28/2012 Dr. Md. Humayun Kabir29

}

Special operator new and delete p p

#include <iostream>#include <iostream>
using namespace std;
class CRectangle {

int width height;int width, height;
public:

CRectangle (int,int);
i t () { t (idth*h i ht) }int area () {return (width*height);}

};

CRectangle::CRectangle (int width, int height) {
this->width = width; this->height = height;

}

5/28/2012 Dr. Md. Humayun Kabir30

Special operator new and delete p p

int main(){int main(){
CRectangle *rp=new CRectangle(3,4);
cout<<“The area of the rectangle is “<<rp->area()<<endl;g p ()
delete rp;
return 0;

}

5/28/2012 Dr. Md. Humayun Kabir31

Array of Objectsy j

#include <iostream>
using namespace std;
class Circle{

double rad;
public:

void setRad(double r){rad=r;}
double area(){return 3.14*rad*rad;}

}

int main(){
Circle crls[2];
crls[0].setRad(7.44);
crls[1].setRad(3.65);
cout<<“The area of the first circle is “<<crls[0].area()<<endl;
cout<<“The area of the second circle is “<<crls[1].area()<<endl;
return 0;

5/28/2012 Dr. Md. Humayun Kabir32
}

Array of Objectsy j

#include <iostream>
using namespace std;
class Circle{

double rad;
public:

void setRad(double r){rad=r;}
double area(){return 3.14*rad*rad;}

}

int main(){
Circle *crls=new Circle[2];
crls[0].setRad(7.44);
crls[1].setRad(3.65);
cout<<“The area of the first circle is “<<crls[0].area()<<endl;
cout<<“The area of the second circle is “<<crls[1].area()<<endl;
delete [] crls;
return 0;

5/28/2012 Dr. Md. Humayun Kabir33
}

Array of Objectsy j

#include <iostream>
using namespace std;
class Circle{

double rad;
public:public:

Circle(double r){rad=r;}
double area(){return 3.14*rad*rad;}

}}

int main(){
Circle crls[2]={7 44 3 65};Circle crls[2]={7.44, 3.65};
cout<<“The area of the first circle is “<<crls[0].area()<<endl;
cout<<“The area of the second circle is “<<crls[1].area()<<endl;
return 0;

5/28/2012 Dr. Md. Humayun Kabir34

;
}

Array of Objectsy j

#include <iostream>
using namespace std;
class Circle{

double rad;
double x;
double y;
public:

Circle(double r, double x, double y){rad=r; this->x=x; this->y=y;}
double area(){return 3.14*rad*rad;}

}

int main(){
Circle crls[2]={Circle(7.44, 0.0, 0.0), Circle(3.65, 0.5, 2.5)};
cout<<“The area of the first circle is “<<crls[0].area()<<endl;
cout<<“The area of the second circle is “<<crls[1].area()<<endl;
return 0;

}

5/28/2012 Dr. Md. Humayun Kabir35

Reference

#include <iostream>#include iostream
using namespace std;
void swapargs (int x, int y){

int t;;
t=x;x=y;y=t;

}
int main(){

int i, j;
i=20; j=40;
cout<<“i=”<<i<<“, “<<j<<endl;
swapargs(i,j); //will not swap the values
cout<<“i=”<<i<<“, “<<j<<endl;
return 0;

}

5/28/2012 Dr. Md. Humayun Kabir36
}

Reference

#include <iostream>#include iostream
using namespace std;
void swapargs (int *x, int *y){

int t;;
t=*x;*x=*y;*y=t;

}
int main(){

int i, j;
i=20; j=40;
cout<<“i=”<<i<<“, “<<j<<endl;
swapargs(&i,&j);
cout<<“i=”<<i<<“, “<<j<<endl;
return 0;

}

5/28/2012 Dr. Md. Humayun Kabir37
}

Reference

#include <iostream>#include iostream
using namespace std;
void swapargs (int &x, int &y){

int t;;
t=x;x=y;y=t;

}
int main(){

int i, j;
i=20; j=40;
cout<<“i=”<<i<<“, “<<j<<endl;
swapargs(i,j);
cout<<“i=”<<i<<“, “<<j<<endl;
return 0;

}

5/28/2012 Dr. Md. Humayun Kabir38
}

Passing Reference to Functiong

#include <iostream>
using namespace std;
class Circle{

double rad;
public:

void setRad(double r){rad=r;}void setRad(double r){rad r;}
double getRad()(return rad;}
double area(){return 3.14*rad*rad;}

};

void expand(Circle c double e){void expand(Circle c, double e){
c.setRad(c.getRad()*e);

}
int main(){

Circle c;
c.setRad(2.7);
cout<<“The area of the circle is “<<c.area()<<endl;
expand(c,1.5); //will not change the circle
cout<<“The area of the circle is “<<c.area()<<endl;
return 0;

5/28/2012 Dr. Md. Humayun Kabir39

;
}

Passing Reference to Functiong

#include <iostream>
using namespace std;
class Circle{

double rad;
public:

void setRad(double r){rad=r;}void setRad(double r){rad r;}
double getRad()(return rad;}
double area(){return 3.14*rad*rad;}

};

void expand(Circle *c double e){void expand(Circle *c, double e){
c->setRad(c->getRad()*e);

}
int main(){

Circle c;
c.setRad(2.7);
cout<<“The area of the circle is “<<c.area()<<endl;
expand(&c,1.5);
cout<<“The area of the circle is “<<c.area()<<endl;
return 0;

5/28/2012 Dr. Md. Humayun Kabir40

;
}

Passing Reference to Functiong

#include <iostream>
using namespace std;
class Circle{

double rad;
public:

void setRad(double r){rad=r;}void setRad(double r){rad r;}
double getRad()(return rad;}
double area(){return 3.14*rad*rad;}

};

void expand(Circle &c double e){void expand(Circle &c, double e){
c.setRad(c.getRad()*e);

}
int main(){

Circle c;
c.setRad(2.7);
cout<<“The area of the circle is “<<c.area()<<endl;
expand(c,1.5);
cout<<“The area of the circle is “<<c.area()<<endl;
return 0;

5/28/2012 Dr. Md. Humayun Kabir41

;
}

Passing Reference to Functiong

#include <iostream>
using namespace std;
class Circle{

double *rad;
public:

Ci l (d bl){ d d bl * d t<<“C t ti ”<< dl }Circle(double r){rad=new double; *rad=r; cout<<“Constructing…..”<<endl;}
~Circle(){delete rad; cout<<“Destructing…..”<<endl;}
void setRad(double r){*rad=r;}
double getRad()(return *rad;}
double area(){return 3 14*(*rad)*(*rad);}double area(){return 3.14 (rad) (rad);}

};
void expand(Circle c, double e){

c.setRad(c.getRad()*e);
}
int main(){

Circle c(2.7);
cout<<“The area of the circle is “<<c.area()<<endl;
expand(c,1.5);

t<<“Th f th i l i “<< ()<< dl

5/28/2012 Dr. Md. Humayun Kabir42
cout<<“The area of the circle is “<<c.area()<<endl;
return 0;

}

Passing Reference to Functiong

#include <iostream>
using namespace std;
class Circle{

double *rad;
public:

Ci l (d bl){ d d bl * d t<<“C t ti ”<< dl }Circle(double r){rad=new double; *rad=r; cout<<“Constructing…..”<<endl;}
~Circle(){delete rad; cout<<“Destructing…..”<<endl;}
void setRad(double r){*rad=r;}
double getRad()(return *rad;}
double area(){return 3 14*(*rad)*(*rad);}double area(){return 3.14 (rad) (rad);}

};
void expand(Circle &c, double e){

c.setRad(c.getRad()*e);
}
int main(){

Circle c(2.7);
cout<<“The area of the circle is “<<c.area()<<endl;
expand(c,1.5);

t<<“Th f th i l i “<< ()<< dl

5/28/2012 Dr. Md. Humayun Kabir43
cout<<“The area of the circle is “<<c.area()<<endl;
return 0;

}

Returning Reference from Functiong

#include <iostream>#include <iostream>
using namespace std;
int x;

int &xref(){
return x;

}}

int main(){
xref()=100;
cout<<“x= “<<x<<endl;
return 0;

5/28/2012 Dr. Md. Humayun Kabir44
}

cout<<“Thank You”<<endl;;

cout<<“Have a Good Day”<<endl;cout Have a Good Day endl;

5/28/2012 Dr. Md. Humayun Kabir45

