C++ Exception Handling

Dr. Md. Humayun Kabir
CSE Department, BUET

Exception Handling
..

e An exception is an unusual behavior of a program
during its execution

e EXxception can occur due to
— Wrong user input
- Wong run-time environment
O EXCGDtIOnS do not occur alwavs However,

abnormally terminates the program execution when
occur

e Compiler cannot report whether a part of a code will
cause exception or not

e C++ allows programmers to anticipate and handle
exceptions

5/28/2012 Dr. Md. Humayun Kabir

Exception Due to Wrong User Input

#include <iostream>
using namespace std;
iInt main(){
int a, b;
cout<<"Enter a whole number a: ";
cin>>3a;
cout<<"Enter another whole number b: ";
cin>>Db;
cout<<"The result of a/b is: "<<a/b<<endl; //exception if b=0
return O;

5/28/2012 Dr. Md. Humayun Kabir

Exception Due to Wrong User Input

#include <iostream>
using namespace std;
int main(){
int a, b;
cout<<"Enter a whole number a: ";
cin>>a;
cout<<"Enter another whole number b: ";
cin>>b;
if(b!'=0){
cout<<"The result of a/b is: "<<a/b<<endl;
}
else {
cout<<“Can’t divide by zero"<<endl;

}

return O;

5/28/2012 Dr. Md. Humayun Kabir

Exception Due to Wrong User Input
c]

#include <iostream>
using namespace std;
const int divideByZero=0;
int main(){
int a, b;
cout<<"Enter a whole number a: ";
cin>>a;
cout<<"Enter another whole number b: ";
cin>>b;
try{
if(b!=0)
cout<<"The result of a/b is: "<<a/b<<end!;
else
throw divideByZero;
}
catch (int e){
if(e==divideByZero) cout<<“Can’t divide by zero"<<endl;
}

return O;

5/28/2012 Dr. Md. Humayun Kabir

Exception Due to Wrong User Input

#include <iostream>
using namespace std;
int divide(int a, int b){
if(b!=0)
return a/b;
else
cout<<“Can’t divide by zero"<<endl;
/Iwill give warning, function ends without returning an integer
}
int main(){
int a, b;
cout<<"Enter a whole number a: ";
cin>>a;
cout<<"Enter another whole number b: ";
cin>>b;
cout<<"The result of divide (a, b) is: "<<divide (a,b)<<endl;
return O;

5/28/2012 Dr. Md. Humayun Kabir

Exception Due to Wrong User Input

#include <iostream>

using hamespace std;
const int divideByZero=0;

Int divide(int a, int b) throw (int){
If(b!=0)
return a/b;
else

throw divideByZero;

5/28/2012 Dr. Md. Humayun Kabir

Exception Due to Wrong User Input

int main(){
int a, b;
cout<<"Enter a whole number a: ";
cin>>a;
cout<<"Enter another whole number b: ";
cin>>b;

try{

}
catch (int e) {

if (e==divideByZero) cout<<“Can’t divide by zero”<<end|;

cout<<"The result of divide (a, b) is: "<<divide (a,b)<<end];

}

return O;

5/28/2012 Dr. Md. Humayun Kabir

Exception Due to Wrong Run-time
Environment

#include <iostream>
#include <cstring>
using namespace std;
int main(){
char str[100]="Long Live Bangladesh";
char *p;
p=new char[100000]; //exception if new cannot allocate memory

strcpy(p, str);
cout<<str<<end!:

cout<<p<<endl;
return O;

5/28/2012 Dr. Md. Humayun Kabir

Exception Due to Wrong Run-time
Environment

#include <iostream>
#include <cstring>
#include <cstdlib>
using namespace std;
int main(){
char str[100]="Long Live Bangladesh";
char *p;
p=new char[100000];
if(p==NULL){
cout<<*Memory Allocation Problem”<<end];
exit(1);
}

strepy(p, str);
cout<<str<<end];

cout<<p<<endl,
return O;

5/28/2012 Dr. Md. Humayun Kabir

Exception Due to Wrong Run-time
Environment

#include <iostream>
#include <cstring>
#include <cstdlib>
using namespace std;
int main(){
char str[100]="Long Live Bangladesh";
char *p;
try {
p=new char[100000];
if(p==NULL) throw “Memory Allocation Problem”;

}

catch (char *str){
cout<<“Exception Occurs: “<<str<<end];
}

strepy(p, str);
cout<<str<<end|;

cout<<p<<endl,
return O;

5/28/2012 Dr. Md. Humayun Kabir

Exception Due to Wrong Run-time
Environment

#include <iostream>

#include <cstring>

#include <new>

using namespace std;

int main(){
char str[100]="Long Live Bangladesh";
char *p;

try {

}
catch (bad_alloc & ba){

cout<<“Exception Occurs: “<<ba.what()<<endl;

p=new char[100000];

}

strepy(p, str);
cout<<str<<end!;

cout<<p<<endl;

return O;
} 5/28/2012 Dr. Md. Humayun Kabir

Throwing Primitive Data as Exceptions
o

#include <iostream>
using namespace std;
int main(){
int n;
cout<<“Enter a number: “;
cin>>n;
try {
if (h==0) throw ‘z’;
else if(n%2==0) throw 2;
else throw 3.14
}
catch (char c){
cout<<“Zero Exception: "<<c<<endl;
}
catch (int x){
cout<<“Integer Exception: "<<x<<endl,
}
catch (double d){
cout<<“Double Exception: "<<d<<endl,

}

return O;

5/28/2012 Dr. Md. Humayun Kabir

Catch All Exceptions by Ellipses
S

#include <iostream>
using namespace std;
int main(){
int n;
cout<<“Enter a number: *;
cin>>n;
try {
if (n==0) throw ‘Z’;
else if(n%2==0) throw 2;
else throw 3.14
}
catch (...
cout<<“Exception: "<<endl;

}

return O;

5/28/2012 Dr. Md. Humayun Kabir

Throw User Defined Object as
Exception

#include <iostream>

using hamespace std;

class myclass{
public:
char* what() throw(){
return "Divide By Zero Exception”;

}
%

5/28/2012 Dr. Md. Humayun Kabir

Throw User Defined Object as
Exception

int main () {

int a, b;
myclass ex;
cout<<"Enter a and b: ";
cin>>a>>b;

try

{

if(b==0) throw ex;

else cout<<"a/b:= "<<a/b<<endl;

}

catch (myclass& e)

{

cout << "exception caught: " << e.what() << endl;

}

return O;

5/28/2012 Dr. Md. Humayun Kabir

Standard Exception Class

#include <exception>

class exception {

public:

exception () throw();

exception (const exception&) throw();

exception& operator= (const exception&) throw();
virtual ~exception() throw();

virtual const char* what() const throw();

5/28/2012 Dr. Md. Humayun Kabir

Standard Exception Class
S

e All objects thrown by components of the standard
library are derived from this exception class

e Therefore, all standard exceptions can be caught by
catching this type

e Some classes derived from exception class are:
- bad alloc
-~ bad cast
-~ bad exception
- bad typeid
- logic error
— runtime_error

5/28/2012 Dr. Md. Humayun Kabir

Standard Exception Class
S

#include <iostream>
#include <typeinfo>
using namespace std;
class Polymorphic {virtual void Member(){}};
int main () {
try
{
Polymorphic * pb = 0;
typeid(*pb); // throws a bad_typeid exception
}

catch (exception& e)

{

cerr << "exception caught: " << e.what() << endl;

}

return O;

}

5/28/2012 Dr. Md. Humayun Kabir

Standard Exception Class
S

#include <iostream>
#include <typeinfo>
using namespace std;
class Base {virtual void Member(){}};
class Derived : Base {};
int main () {
try { Base b;
Derived& rd = dynamic_cast<Derived&>(b);
}

catch (bad_cast& bc) {

cerr << "bad_cast caught: " << bc.what() << endl; }
return O;

5/28/2012 Dr. Md. Humayun Kabir

Standard Exception Class
S

#include <iostream>
#include <typeinfo>
using namespace std;
class Base {virtual void Member(){}};
class Derived : Base {};
int main () {
try {
Base Db;
Derived& rd = dynamic_cast<Derived&>(b);
}
catch (bad_cast& bc) {

cerr << "bad_cast caught; " << bc.what() << endl; }
return O;

5/28/2012 Dr. Md. Humayun Kabir

User Defined Exception Class Derived
from Standard Exception Class

#include <iostream>
#include <exception>
using namespace std;

class myexception : public exception{
public:

const char* what() const throw(){
return "Divide By Zero Exception”;
}

%

5/28/2012 Dr. Md. Humayun Kabir

User Defined Exception Class Derived
from Standard Exception Class

int main () {
int a, b;
myexception ex;
cout<<"Enterand b: ";
cin>>a>>b;
try
{
if(b==0) throw ex;
else cout<<"a/b:= "<<a/b<<endl;
}

catch (exception& e) {cout << "exception caught: " << e.what() << endl; }
return O;

5/28/2012 Dr. Md. Humayun Kabir

cout<<*Thank You”’<<endl:
c -]

cout<<*Have a Good Day’<<end];

5/28/2012 Dr. Md. Humayun Kabir

