C++ Function Overloading
(Polymorphism)

Dr. Md. Humayun Kabir
CSE Department, BUET



Function Overloading
S

#include <iostream>
using namespace std;
Int average_i(int [], int);
double average_d(double [], int);
iInt main(){
int members[]={23, 31, 53, 41,93},
double ranks[]={0.3, 0.1, 0.3, 0.2, 0.5};
cout<<“Average members: “<<average_i(members, 5)<<end|;
cout<<“Average rank: “<<avergae_d(ranks, 5)<<endl;
return O;

5/28/2012 Dr. Md. Humayun Kabir



Function Overloading
S

int average _i(int arr[], int size){
int i, avg=0;
for(i=0;i<size;i++){
avg+=arr[i];
}
return avg/size;
}
double average d(double arr[],int size){
int i;
double avg=0;
for(i=0;i<size;i++){
avg+=arri];
}

return avg/size;

5/28/2012 Dr. Md. Humayun Kabir



Function Overloading
S

#include <iostream>
using namespace std;
Int average(int [], int);
double average(double [], int);
iInt main(){
int members[]={23, 31, 53, 41,93},
double ranks[]={0.3, 0.1, 0.3, 0.2, 0.5};
cout<<“Average members: “<<average(members, 5)<<endl;
cout<<“Average rank: “<<average(ranks, 5)<<endl;
return O;

5/28/2012 Dr. Md. Humayun Kabir



Function Overloading
S

int average(int arr[], int size){
int i, avg=0;
for(i=0;i<size;i++){
avg+=arr[i];
}
return avg/size;
}
double average(double arr[],int size){
int i
double avg=0;
for(i=0;i<size;i++){
avg+=arri];
}

return avg/size;

5/28/2012 Dr. Md. Humayun Kabir



Function Overloading
S

Two or more overloaded functions can have the
same name

However, either the argument types or the number of
the arguments or both of the overloaded functions
must differ

Return type of the overloaded functions might be the
same or different

Return type alone is not a sufficient difference to
allow function overloading

Reduces the complexity of a program by allowing
related operations to be referred to by the same
name

5/28/2012 Dr. Md. Humayun Kabir



Function Overloading
S

#include <iostream>
using namespace std;
class Math{
public:
int square(int);
double square(double);
I3
Int Math::square(int n){
return n*n;
}
double Math::square(double d){
return d*d,;

}

5/28/2012 Dr. Md. Humayun Kabir



Function Overloading
S

iInt main(){
inti=12;
double d=3.9;
Math m;
cout<<"The square of "<<i<<" is "<<m.square(i)<<endl;
cout<<"The square of "<<d<<" is "<<m.square(d)<<end];
return O;

5/28/2012 Dr. Md. Humayun Kabir



Constructor Function Overloading
S

e Constructor function can be overloaded for
three reasons

— To gain flexibility
— To support array
— To create copy constructor

e It is not possible to overload the destructor
function

5/28/2012 Dr. Md. Humayun Kabir



Constructor Function Overloading
S

#include <iostream>
using namespace std;
class CRectangle {
int width, height;
public:
CRectangle () {width=0, height=0;}
CRectangle (int,int);
void set_values (int,int);
int area () {return (width*height);}
|3
CRectangle::CRectangle (int a, int b) {
width = a; height = b;
}
void CRectangle::set_values (int a,int b){
width = a; height = b;
}

5/28/2012 Dr. Md. Humayun Kabir



Constructor Function Overloading
S

int main () {
CRectangle recta,;
CRectangle rectb (5,6);
CRectangle rects[2];
//[CRectangle rects[2]={CRectangle(7,8), CRectangle(12,4)};
recta.set_values(3,4);
rects[0].set_values(7,8);
rects[1l].set values(12,4);
cout << "recta area: " <<recta.area() << endl;
cout << "rectb area: " <<rectb.area() << endl;
cout << "rects[0] area: " << rects[0].area() << endl;
cout << "rects[1] area: " << rects[1].area() << endl;
return O;

5/28/2012 Dr. Md. Humayun Kabir



Constructor Function Overloading
S

int main () {
CRectangle *rects=new CRectangle[2] ;
rects->set_values(7,8);
cout << "rects[0] area: " << rects->area() << endl;
rects++;
rects->set_values(12,4);
cout << "rects[1] area: " << rects->area() << endl;
return O;

5/28/2012 Dr. Md. Humayun Kabir



Copy Constructor
-

e Copy constructor is a constructor which
creates an object by Initializing it with an
object of the same class

e The copy constructor is used to:

— Initialize one object from another object of the
same type in a declaration statement

- Copy an object to pass it as an argument to a
function

— Copy an object to return it from a function

5/28/2012 Dr. Md. Humayun Kabir



Copy Constructor
-

e If a copy constructor is not defined in a class,
the compiler itself defines one (shallow or
default copy constructor), which makes a
shallow copy of the object.

e |f the class has pointer variables and
dynamic memory allocations, then shallow or
bitwise copy is not enough

e It must make a deep copy with an explicitly
defined copy constructor

5/28/2012 Dr. Md. Humayun Kabir



Copy Constructor
-

#include <iostream>
using namespace std;
class CRectangle {
int *width, *height;
public:
CRectangle ();
CRectangle (int,int);
~CRectangle ();
int area () {return (*width * *height);}
|3
CRectangle::CRectangle () {
width = new int;
height = new int;
*width = 0;
*height = 0;

5/28/2012 Dr. Md. Humayun Kabir



Copy Constructor
-

CRectangle::CRectangle (int a, int b) {
width = new int;
height = new int;
*width = a;
*height = b;
}

CRectangle::~CRectangle () {
delete width;
delete height;

}

5/28/2012 Dr. Md. Humayun Kabir



Copy Constructor
-

CRectangle larger(CRectangle ra, CRectangle rb){
if(ra.area()>rb.area())
return ra;
else
return rb;

5/28/2012 Dr. Md. Humayun Kabir



Copy Constructor
-

int main () {
CRectangle recta (3,4), rectb(5,6);

CRectangle rectc=recta, //this will cause problem

cout <<"recta area: " <<recta.area() << endl;
cout << "rectb area: " <<rectb.area() << endl;
cout << "rectc area: " <<rectc.area() << endl;
[*calling larger(recta rectb) will cause problem */
cout<< “large area: “<<larger(recta,rectb).area();
return O;

5/28/2012 Dr. Md. Humayun Kabir



Copy Constructor
-

class CRectangle {

int *width, *height;

public:
CRectangle ();
CRectangle (int,int);
CRectangle(const CRectangle &r);
~CRectangle ();
int area () {return (*width * *height);}

5/28/2012 Dr. Md. Humayun Kabir



Copy Constructor
-

CRectangle::CRectangle(const CRectangle &r){
width=new int;
height=new int;
*width=*r.width;
*height=*r.neight;

5/28/2012 Dr. Md. Humayun Kabir



Copy Constructor
-

int main () {
CRectangle recta (3,4), rectb(5,6);
CRectangle rectc=recta; //this will call copy constructor
/ICRectangle rect_larger;
//[CRectangle rectd;
llrectd=rectb;
[*Following statement will call copy constructor and cause
the program to crash
*/
/lrect_larger=larger(recta, rectb);
cout << "recta area: " <<recta.area() << endl;
cout << "rectb area: " <<rectb.area() << endl;
cout << "rectc area: " <<rectc.area() << endl;
/*this will call both copy constructor and destructor 3 times */
cout<< “large area: “<<larger(recta,rectb).area();
/lcout << "rect_larger area: " <<rect_larger.area() << endl;
return 0O;

5/28/2012 Dr. Md. Humayun Kabir



cout<<*Thank You”’<<endl:
c -]

cout<<*Have a Good Day’<<end];

5/28/2012 Dr. Md. Humayun Kabir



