
C++ I/O and FileC++ I/O and File

Dr. Md. Humayun Kabir
CSE Department, BUET

Custom Inserter<<

#include <iostream>
using namespace std;g p
class myclass{

int x, y;
public:

myclass(int x, int y){this->x=x; this->y=y;}
friend ostream &operator<<(ostream &out, myclass ob);

};
ostream &operator<<(ostream &o t m class ob){ostream &operator<<(ostream &out, myclass ob){

out<<“x: “<<ob.x<<“, y: “<<ob.y<<endl;
return out;

}

6/12/2012 Dr. Md. Humayun Kabir2

}

Custom Inserter<<

int main(){
myclass ob(120 130);myclass ob(120, 130);
cout<<ob;
return 0;

}

6/12/2012 Dr. Md. Humayun Kabir3

Custom Extractor >>

#include <iostream>
using namespace std;
class m class {class myclass {

int x, y;
public:

myclass (int x, int y){this->x=x; this->y=y;}
friend istream &operator>>(istream &in myclass &ob);friend istream &operator>>(istream &in, myclass &ob);

};
istream &operator>>(istream &in, myclass &ob){

cout<<“Enter x: “;
in>>ob x;in>>ob.x;
cout<<“Enter y: “;
in>>ob.y;
return in;

}

6/12/2012 Dr. Md. Humayun Kabir4

}

Custom Extractor >>

int main(){
myclass ob(120 130);myclass ob(120, 130);
cout<<ob;
cin>>ob;
cout>>ob;
return 0;

}}

6/12/2012 Dr. Md. Humayun Kabir5

C++ File I/O

C++ provides three classes to perform output
and input of characters to/from files:and input of characters to/from files:
– ofstream: Stream class to write on files
– ifstream: Stream class to read from files
– fstream: Stream class to both read and write

from/to files.
Th l d i d di tlThese classes are derived directly or
indirectly from the classes istream and
ostream.

6/12/2012 Dr. Md. Humayun Kabir6

C++ File I/O

To work with file you need to include <fstream>
A fil d t b d b if t b f dA file needs to be opened by ifstream before read or
ofstream to write or fstream to read and write

– void ifstream::open(const char *filename, openmode p (, p
mode=ios::in)

– void ofstream::open(const char *filename, openmode
mode=ios::out|ios::trunc)|)

– void fstream::open(const char *filename, openmode
mode=ios::in|ios::out)

6/12/2012 Dr. Md. Humayun Kabir7

C++ File I/O

The value of mode determines how the file is opened
Type openmode is an enumeration defined by iosType openmode is an enumeration defined by ios
that contains the following values:

– ios::app
– ios::ate
– ios::binary
– ios::in
– ios::out

ios::trunc– ios::trunc
You can combine two or more of these value
together by ORing them.
If open() fails the stream will evaluate to false

6/12/2012 Dr. Md. Humayun Kabir8

If open() fails the stream will evaluate to false.

C++ File I/O

You can also use fstream(), ifstream() and ofstream()
constructors to open the files in one step.p p
These constructors have the same parameters and
defaults as their corresponding open() function

– ifstream(const char *filename, openmode mode=ios::in)(, p)
– ofstream(const char *filename, openmode

mode=ios::out|ios::trunc)
– fstream(const char *filename, openmode mode=ios::in|ios::out)

All th t h b l i () b f ti tAll the streams have bool is_open() member function to
check whether the file has been successfully opened or
not.

6/12/2012 Dr. Md. Humayun Kabir9

C++ File I/O

You can detect when the end of an input file has been
reached by using eof() member functionreached by using eof() member function.
You must close a file close() member function once you
have done with the file.

f t t (“ fil t t)– fstream mystream(“myfile.txt)
– if(mystream) or if(mystream.is_open())
– while(!mystream.eof())
– mystream<<“Testing file”
– mystream>>str; //char *str
– mystream.close()

6/12/2012 Dr. Md. Humayun Kabir10

C++ File I/O: Writing

#include <iostream>
#include <fstream>#include <fstream>
using namespace std;
int main () {

ofstream myfile;
myfile.open ("example.txt");
myfile << "Writing this to a file.\n"; y g
myfile.close();
return 0;

}

6/12/2012 Dr. Md. Humayun Kabir11

}

C++ File I/O: Reading

#include <iostream>
#include <fstream>
using namespace std;

6/12/2012 Dr. Md. Humayun Kabir12

C++ File I/O: Reading

int main () {
char ch;

else
cout << "Unable to openchar ch;

ifstream myfile ("example.txt");
if (myfile.is_open()) {

cout << Unable to open
file";
return 0;

}
while (!myfile.eof()) {

myfile>>ch;
cout << ch;

}
cout<<endl;
myfile close();

6/12/2012 Dr. Md. Humayun Kabir13

myfile.close();
}

C++ File I/O: Unformatted (Binary)

istream &get(char ch)
M b f ti f f t d if t– Member function of fstream and ifstream

– Associated stream must be opened with
ios::binary openmode optiony p p

– Reads a single character from the stream and
puts the value in ch
Returns the reference to the stream– Returns the reference to the stream

– If the end-of-file is reached returned stream will
be evaluated false

6/12/2012 Dr. Md. Humayun Kabir14

C++ File I/O: Unformatted (Binary)

ostream &put(char ch)
– Member function of fstream and ofstream
– Associated stream must be opened with

ios::binary openmode optionios::binary openmode option
– Writes a single character from ch to the stream
– Returns the reference to the stream

6/12/2012 Dr. Md. Humayun Kabir15

C++ File I/O: Unformatted (Binary)

#include <iostream>
#include <fstream>
#include <cstdlib>#include <cstdlib>
using namespace std;
int main(){

char str[100]="I love Bangladesh";
ofstream out("myfile.txt", ios::out|ios::binary);
if(! t i ()){if(!out.is_open()){

cout<<"Cannot open file"<<endl;
exit(1);

}
for(int i=0; str[i]; i++)(; [];)

out.put(str[i]);
out.close();
return 0;

}

6/12/2012 Dr. Md. Humayun Kabir16

C++ File I/O: Unformatted (Binary)

#include <iostream>
#include <fstream>
#include <cstdlib>#include <cstdlib>
using namespace std;
int main(){

char ch;
ifstream in("myfile.txt", ios::in|ios::binary);
if(!i i ()){if(!in.is_open()){

cout<<"Cannot open file"<<endl; exit(1);
}
while(!in.eof()){

in.get(ch);g ();
cout<<ch;

}
cout<<endl;
return 0;
in close();

6/12/2012 Dr. Md. Humayun Kabir17

in.close();
}

C++ File I/O: Unformatted (Binary)

#include <iostream>
#include <fstream>
#include <cstdlib>#include <cstdlib>
using namespace std;
int main(){

char str[100]="I love Bangladesh", ch;
fstream mystream("myfile.txt", ios::out|ios::in|ios::binary);
if(! t i ()){if(!mystream.is_open()){

cout<<"Cannot open file"<<endl; exit(1);
}
for(int i=0; str[i]; i++) mystream.put(str[i]);
mystream.seekg(0, ios::beg);y g(, g);
while(!mystream.eof()){

mystream.get(ch); cout<<ch;
}
cout<<endl;
mystream close();

6/12/2012 Dr. Md. Humayun Kabir18

mystream.close();
return 0;

}

C++ File I/O: Unformatted (Binary)

To read blocks of unformatted (binary) data from a
file you need to use read() member function of y ()
fstream or ifstream.

– istream &read(char *buf, streamsize num)
– Reads num number of bytes from the stream and puts them

i b fin buf
– Might read less than num number of bytes if the end-of-file

is reached ahead
– How many bytes have been read can be determined byHow many bytes have been read can be determined by

using gcount() member function.

6/12/2012 Dr. Md. Humayun Kabir19

C++ File I/O: Unformatted (Binary)

To write blocks of unformatted (binary) data in a file
you need to use write() member function of fstreamy ()
or ofstream.

– ostream &write(const char *buf, streamsize num)
– Writes num number of bytes from buf in the the stream

6/12/2012 Dr. Md. Humayun Kabir20

C++ File I/O: Unformatted (Binary)

#include <iostream>
#include <fstream>
#include <cstdlib>#include <cstdlib>
#include <cstring>
using namespace std;
int main(){

char str1[100]="I love Bangladesh", str2[100];
f t t (" fil t t" i t|i i |i bi)fstream mystream("myfile.txt", ios::out|ios::in|ios::binary);
if(!mystream.is_open()){

cout<<"Cannot open file"<<endl; exit(1);
}
mystream.write(str1, strlen(str1)+1);y (, ());
mystream.seekg(0, ios::beg);
mystream.read(str2, strlen(str1)+1);
cout<<str2<<endl;
mystream.close();
return 0;

6/12/2012 Dr. Md. Humayun Kabir21

return 0;
}

C++ File I/O: Unformatted (Binary)

To read blocks of unformatted (binary) data from a
file you can also use overloaded get() member y g ()
function of fstream or ifstream.

– istream &get(char *buf, streamsize num)
– istream &get(char *buf, streamsize num, char delim)
– Reads num-1 number of bytes from the stream and puts

them in buf
– Character sequence in the buf is null terminated.

If newline or delim character is encountered before num 1– If newline or delim character is encountered before num-1
characters it is not read and removed from the stream.

6/12/2012 Dr. Md. Humayun Kabir22

C++ File I/O: Unformatted (Binary)

To read blocks of unformatted (binary) data from a
file you can also use overloaded getline() member y g ()
function of fstream or ifstream.

– istream &getline(char *buf, streamsize num)
– istream &getline(char *buf, streamsize num, char delim)
– Reads num-1 number of bytes from the stream and puts

them in buf
– Character sequence in the buf is null terminated.

If newline delim character is encountered before num 1– If newline delim character is encountered before num-1
characters it is read and removed from the stream.

6/12/2012 Dr. Md. Humayun Kabir23

C++ File I/O: Unformatted (Binary)

Another overloaded get() member function of
fstream or ifstream works as follows.

– int get()
– Returns the next character from the stream.
– Returns EOF if end-of-file is encountered
– Similar to C’s getc() function.

You can return the last character read from an input
stream using putback() member function.

– istream &putback(char c)
You can obtain the next character in the input stream
without removing it using peek() member function.

6/12/2012 Dr. Md. Humayun Kabir24
– int peek()

C Fil I/O U f tt d (Bi)C++ File I/O: Unformatted (Binary)
Random Access

istream &seekg(off_type offset, seekdir origin)
– is a member function of ifstream and fstreamis a member function of ifstream and fstream
– Moves the current get pointer offset number of bytes from

the specified origin
ostream &seekp(off_type offset, seekdir origin)

– is a member function of ofstream and fstream
– Moves the current put pointer offset number of bytes from

the specified origin
kdi i ti d fi d i i ith thseekdir is an enumeration defined in ios with the

following values:
– ios::beg

ios::cur

6/12/2012 Dr. Md. Humayun Kabir25

– ios::cur
– ios::end

C++ File I/O: Checking the Status

C++ I/O System maintains status information about
the outcome of each I/O operation.p
The current status of an I/O stream is described in
an object of type iostate, which is an enumeration
defined in ios with the following values:g

– ios::goodbit
– ios::eofbit
– ios::failbit
– ios::badbit

To read the I/O status you can use rdstate() function
– iostate rdstate()

6/12/2012 Dr. Md. Humayun Kabir26
– It is a member of ios and inherited by all the streams

C++ File I/O: Checking the Status

#include <iostream>
#include <fstream>
#include <cstdlib>
using namespace std;
void checkstatus(ifstream &in);
int main(){

char ch;
ifstream in("myfile.txt");
if(!in is open()){if(!in.is_open()){

cout<<"Cannot open file"<<endl;
exit(1);

}
while(!in.eof()){

ch=in.get();ch in.get();
checkstatus(ifstream &in);
cout<<ch;

}
cout<<endl;
in.close();

6/12/2012 Dr. Md. Humayun Kabir27

return 0;
}

C++ File I/O: Checking the Status

void checkstatus(ifstream &in){
ios::iostate s;
s=in.rdstate();
if(s&ios::eofbit)

cout<<“EOF encountered”<<endl;
else if(s&ios::failbit)

cout<<“Non-Fatal I/O error encountered”<<endl;
else if(s&ios::badbit)

t<<“F t l I/O t d”<< dlcout<<“Fatal I/O error encountered”<<endl;
}

6/12/2012 Dr. Md. Humayun Kabir28

C++ File I/O: Checking the Status

You can also determine the status using following
ios member functions those have also been
inherited by all the streams

– bool eof()
– bool good()
– bool fail()
– bool bad()

6/12/2012 Dr. Md. Humayun Kabir29

C++ File I/O: Checking the Status

while(!in.eof()){
ch=in get();ch in.get();
if(in.fail()||in.bad()){

cout<<“I/O Error … terminating”<<endl;
t 1return 1;

cout<<ch;
}

6/12/2012 Dr. Md. Humayun Kabir30

C++ Array Based I/O

#include <strstream>
istrstream to read from the array– istrstream to read from the array

– ostrstream to write in the array
– strstream to read and write

6/12/2012 Dr. Md. Humayun Kabir31

C++ Array Based I/O

istrstream istr(const char *buf)
ostrstream ostr(char *buf streamsize sizeostrstream ostr(char *buf, streamsize size,
openmode mode=ios::out)
strstream iostr(char *buf, streamsize size, (
openmode mode=ios::in|ios::out)
streamsize no_characters=ostr.pcount();

6/12/2012 Dr. Md. Humayun Kabir32

C++ Array Based I/O

#include <iostream>
#include <strstream>
using namespace std;
int main(){

char buf[225];
ostrstream ostr(buf, sizeof(buf));
ostr<<"Array-like I/O uses stream just like";
ostr<<"normal I/O"<<endl;

t<< t t()<< dlcout<<ostr.pcount()<<endl;
cout<<buf;
return 0;

}

6/12/2012 Dr. Md. Humayun Kabir33

}

C++ Array Based I/O

#include <iostream>
#include <strstream>
using namespace std;
int main(){

char buf=“Hello 100 3.14 a”;
istrstream istr(buf);istrstream istr(buf);
int i;
char str[80];
float f;
hchar c;

istr>>str>>i>>f>>c;
cout<<str<<“ “<<f<< “ “<<i<<“ “<<c<<endl;
return 0;

6/12/2012 Dr. Md. Humayun Kabir34

;
}

C++ Array Based I/O

#include <iostream>
#include <strstream>
using namespace std;
int main(){

char buf=“Hello 100 3.14 a”;
istrstream istr(buf);istrstream istr(buf);
char c;
while(!istr.eof()){

istr.get(c);
tcout<<c;

}
cout<<endl;
return 0;

6/12/2012 Dr. Md. Humayun Kabir35

;
}

cout<<“Thank You”<<endl;

cout<<“Have a Good Day”<<endl;

6/12/2012 Dr. Md. Humayun Kabir36

