C++ Inheritance

Dr. Md. Humayun Kabir
CSE Department, BUET

C++ Inheritance
oo

e Inheritance allows one object to inherit
member variables and/or member functions
from another object.

nherited object is called base object
nheriting object is called derived object
Helps programmer to write reusable code
Helps programmer to write compact code

6/12/2012 Dr. Md. Humayun Kabir

C++ Inheritance
oo

Inheritance starts with defining the base class first.
class base-class-name {

I3
Derived class is then defined using the base class

The general form of deriving a class from another class is as
follows:

class derived-class-name: access base-class-name {

I3
Access can be either private or public or protected

Default access is private for derived class, public for derived
structure

6/12/2012 Dr. Md. Humayun Kabir

C++ Inheritance: Base Class
oo

#include <iostream>
using namespace std;
class CRectangle {
Int width, length;
public:
void set_width (int w) {width=w;}
void set_length (int {length=I;}
Int area () {return (width*length);}

6/12/2012 Dr. Md. Humayun Kabir

C++ Inheritance: Derived Class
o

class Box: public CRectangle {
Int height;
public:
void set_height (int h){height=h;}
Int volume () {return area()*height);}

[*private members of the base class cannot be accessed by the derived class */

//int volume () {return width*length*height);}

6/12/2012 Dr. Md. Humayun Kabir

C++ Inheritance: Base and Derived
Objects

int main(){
CRectangle rect;
Box box;
rect.set_width(3);
rect.set_length(4);
box.set_width(3); //inherited
box.set_length(4); //inherited
box.set_height(5);
cout<<“Rectangle area: “<<rect.area()<<endl;
cout<<“Box base area: “<<box.area()<<endl; //inherited
cout<<“Box volume: “<<box.volume()<<endl;
return O;

6/12/2012 Dr. Md. Humayun Kabir

C++ Inheritance: Derived Class
o

class Box: private CRectangle {
Int height;
public:
void set_height (int h){height=h;}
Int volume () {return area()*height);}

%

6/12/2012 Dr. Md. Humayun Kabir

C++ Inheritance: Base and Derived
Objects

int main(){
CRectangle rect;
Box box;
rect.set_width(3);
rect.set_length(4);
//box.set_width(3);
//box.set_length(4);
box.set_height(5);
cout<<“Rectangle area: “<<rect.area()<<endl; //it's public to CRectangle object
[* function area() is private to Box object cannot be accessed outside Box
object */
//lcout<<"Box base area: “<<box.area()<<endl
cout<<“Box volume: “<<box.volume()<<endl; //Will not produce expected result
return O;

6/12/2012 Dr. Md. Humayun Kabir

C++ Inheritance: Base Class
oo

#include <iostream>
using namespace std;
class CRectangle {
protected:
Int width, length;
public:
void set_width (int w) {width=w;}
void set_length (int {length=I;}
Int area () {return (width*length);}

6/12/2012 Dr. Md. Humayun Kabir

C++ Inheritance: Derived Class
o

class Box: public CRectangle {
Int height;
public:
void set_height (int h){height=h;}

[*protected members of the base class can be accessed by the
derived class */

Int volume () {return width*length*height);}

6/12/2012 Dr. Md. Humayun Kabir

C++ Inheritance: Base and Derived
Objects

int main(){
CRectangle rect;
Box box;
rect.set_width(3);
rect.set_length(4);
box.set_width(3);
box.set_length(4);
box.set_height(5);
cout<<“Rectangle area: “<<rect.area()<<end!;
cout<<“Box base area: “<<box.area()<<endl;
cout<<“Box volume: “<<box.volume()<<end!;
return O;

6/12/2012 Dr. Md. Humayun Kabir

C++ Inheritance with Constructor and
Destructor

#include <iostream>
using namespace std;
class CRectangle {
int *width, *length;
public:
CRectangle ();
CRectangle (int,int);
~CRectangle ();
int area () {return (*width * *length);}
|3
CRectangle::CRectangle () {
width = new int;
length = new int;
*width = 0;
*length = 0;

6/12/2012 Dr. Md. Humayun Kabir

C++ Inheritance with Constructor and
Destructor

CRectangle::CRectangle (int a, int b) {
width = new int;
length = new int;
*width = a;
*length = b;
}

CRectangle::~CRectangle () {
delete width;
delete length;

}

6/12/2012 Dr. Md. Humayun Kabir

C++ Inheritance with Constructor and
Destructor

class Box:public CRectangle{
Int *height;
public:
Box();
Box(int, int, int);
~Box();
Int volume(){ return area()*(*height);}
%
Box::Box () {
height=new Int;
height=0;
}

6/12/2012 Dr. Md. Humayun Kabir

C++ Inheritance with Constructor and
Destructor

]
Box::Box (int w, int |, int h):CRectangle(w,l) {
height=new Int;
height=h;
}
Box::~Box () {
delete height;

}

6/12/2012 Dr. Md. Humayun Kabir

C++ Inheritance: Base and Derived
Objects

int main(){
CRectangle rect(3,4);
Box box (3,4,5);
cout<<“Rectangle area: “<<rect.area()<<endl;
cout<<“Box base area: “<<box.area()<<endl,
cout<<“Box volume: “<<box.volume()<<endl,
return O;

6/12/2012 Dr. Md. Humayun Kabir

C++ Multiple Inheritance
.

e A derived class can inherit more than one base
class

e It can happen in two ways:

— A derived class can be used as the base class for
another derived class: creates a multilevel class
hierarchy

- A derived class can directly inherit more than one base
class

6/12/2012 Dr. Md. Humayun Kabir

C++ Multiple Inheritance: Multilevel class
hierarchy

class Point{
double x;
double y;
public:
Point(double x, y){this->x=Xx; this->y->y;}
void get_xy(double &x, double &y){x=this->x, y=this->y;}

6/12/2012 Dr. Md. Humayun Kabir

C++ Inheritance: . Multilevel class hierarchy

class Circle: public Point{
protected:
double rad;
public:
Circle(double x, double y, double r);
double area(){return 3.14*rad*rad;}
}
Circle::Circle(double x, double y, double r):Point(x,y{
rad=r,;

6/12/2012 Dr. Md. Humayun Kabir

C++ Inheritance: . Multilevel class hierarchy

class Cylinder: public Circle{
double height;
public:
Cylinder(double x, double y, double r, double h);
double volume(){return 3.14*rad*rad*height;}

}

Cylinder::Cylinder(double x, double y, double r, double h):Circle(x,y,r{
height=h;

}

6/12/2012 Dr. Md. Humayun Kabir

C++ Multiple Direct Inheritance
.

class Point{
double x;
double y;
public:
Point(double x, y){this->x=x; this->y->y;}
void get_xy(double &x, double &y){x=this->x, y=this->y;}

6/12/2012 Dr. Md. Humayun Kabir

C++ Multiple Direct Inheritance
.

class Circle{
protected:
double rad,;
public:

Circle(double r) {rad=r;}
double area(){return 3.14*rad*rad;}

6/12/2012 Dr. Md. Humayun Kabir

C++ Multiple Direct Inheritance
.

class Cylinder: public Point, public Circle{
double height;
public:
Cylinder(double x, double y, double r, double h);
double volume(){return 3.14*rad*rad*height;}

}
Cylinder::Cylinder(double x, double y, double r, double h):Point (x,y),Circle(r)

{
}

height=h;

6/12/2012 Dr. Md. Humayun Kabir

C++ Multiple Inheritance: Virtual Base
Class

e Virtual Base Class prevents a derived class to inherit more
than one copy of the base class

e This may happen when a derived class directly inherits two
base classes and these base classes are also derived from
another common base class.

Base Class

Derivedl Class Derivedl Class

\/

Derived3 Class

6/12/2012 Dr. Md. Humayun Kabir

C++ Multiple Inheritance: Virtual Base
Class

#include <iostream>
using namespace std;
class Base{
protected:
Int X;
public:
Base (int x) {this->x=Xx;}
Int getx() {return x;}

6/12/2012 Dr. Md. Humayun Kabir

C++ Multiple Inheritance: Virtual Base
Class

class Derivedl: public Base{
protected:
inty,;
public:
Derivedl (int X, int y);
Int gety() {return y;}

%

Derivedl::Derivedl(int x, int y): Base (x){
this->y=y;

}

6/12/2012 Dr. Md. Humayun Kabir

C++ Multiple Inheritance: Virtual Base
Class

class Derived?2: public Base{
protected:
Int z;
public:
Derived?2 (int X, int 2);
Int getz() {return z;}

1

Derived2::Derived?2 (int x, int z): Base(X) {
this->z=z;

}

6/12/2012 Dr. Md. Humayun Kabir

C++ Multiple Inheritance: Virtual Base
Class

class Derived3: public Derivedl, public Derived?2{
protected:
Int I
public:
Derived3 (int x, inty, int z, int |);
Int getl() {return |;}
|3
Derived3::Derived3 (int x, int y, int z, int |): Derived1(x,y),
Derived2(x,z) {

this->I=l;

6/12/2012 Dr. Md. Humayun Kabir

C++ Multiple Inheritance: Virtual Base
Class

Int main(){
Derived3 d3(1,2,3,4);
[[lcout<<"x: "<<d3.getx()<<endl; //ambiguous
cout<<"y: "<<d3.gety()<<endl,
cout<<"z: "<<d3.getz()<<endl;
cout<<"l: "<<d3.getl()<<end];

return O;

6/12/2012 Dr. Md. Humayun Kabir

C++ Multiple Inheritance: Virtual Base
Class

#include <iostream>
using namespace std,;
class Base{
protected:
Int X;
public:
Base(){x=0;}
Base (int x) {this->x=x;}
void setx(int x){this->x=x;}
Int getx() {return x;}

6/12/2012 Dr. Md. Humayun Kabir

C++ Multiple Inheritance: Virtual Base
Class

class Derivedl: virtual public Base{
protected:
Inty;
public:
Derivedl (int y){this->y=y;}
Derivedl (int x, int y);

Int gety() {return y;}
%
Derivedl::Derivedl1(int X, int y): Base (x){
this->y=y;
}

6/12/2012 Dr. Md. Humayun Kabir

C++ Multiple Inheritance: Virtual Base
Class

class Derived?2: virtual public Base{
protected:
Int z;
public:
Derived?2 (int z){this->z=2z;}
Derived2 (int x, int 2);
Int getz() {return z;}

%

Derived2::Derived?2 (int X, int z): Base(X) {
this->z=z;

}

6/12/2012 Dr. Md. Humayun Kabir

C++ Multiple Inheritance: Virtual Base
Class

class Derived3: public Derivedl, public Derived2{
protected:
int
public:
Derived3 (int x, inty, int z, int |);
int getl() {return I;}
I3
/*
Derived3::Derived3 (int x, inty, int z, int I): Derived1(x,y), Derived2(x,z) {this->I=I;}
*/
Derived3::Derived3 (int X, inty, int z, int I): Derived1(y), Derived2(z) {
/lthis->Xx=Xx;
this->I=l;

6/12/2012 Dr. Md. Humayun Kabir

C++ Multiple Inheritance: Virtual Base
Class

int main(){
Derived3 d3(1,2,3,4);

cout<<"x: "<<d3.getx()<<endl; // print x: 0, which has been set by Base default
constructor

cout<<"y: "<<d3.gety()<<end];
cout<<"z: "<<d3.getz()<<endl;
cout<<"|: "<<d3.getl()<<endl;

d3.setx(5);

cout<<"x: "<<d3.getx()<<endl; // print x: 5, which has been set by setx()
function

cout<<"y: "<<d3.gety()<<end];
cout<<"z: "<<d3.getz()<<endl;
cout<<"|: "<<d3.getl()<<endl;
return O;

6/12/2012 Dr. Md. Humayun Kabir

C++ Inheritance: Function Overriding
S

#include <iostream>

using namespace std,

class Point{

protected:
double x;
double vy;

public:
Point() {x=0.0; y=0.0;}
Point(double x, double y);
double area(){return 0;}

I3

Point::Point(double x, double y)}{
this->x=Xx; this->y=y;

}

6/12/2012 Dr. Md. Humayun Kabir

C++ Inheritance: Function Overriding

class Circle: public Point{
protected:
double radious;
public:
Circle(){radious=0.0;}
Circle(double x, double y, double r);
double area();

I3

Circle::Circle(double x, double y, double r) : Point(x,y) {
radious=r;

}

double Circle::area(){
return 3.14*radious*radious;

}

6/12/2012 Dr. Md. Humayun Kabir

C++ Inheritance: Function Overriding

class Cylinder:public Circle{
double height;
public:
Cylinder(){height=0.0;}
Cylinder(double x, double y, double r, double h);
double area();

;

Cylinder::Cylinder(double x, double y, double r, double h): Circle(x,y,r){
height=h;

}

double Cylinder::area(){
return 3.14*radious*radious*height;

}

6/12/2012 Dr. Md. Humayun Kabir

C++ Inheritance: Function Overriding

int main(){
Point p(1.0, 1.0);
Circle c(1.0, 1.0, 3.0);
Cylinder cl(1.0, 1.0, 3.0, 2.0);
cout<<"The area of the point is: "<<p.area()<<endl;

cout<<"The area of the circle is: "<<c.area()<<end];
cout<<"The area of the cylinder is: "<<cl.area()<<endl,

return O;

6/12/2012 Dr. Md. Humayun Kabir

C++ Inheritance: Run-time
Polymorphism

int main(){
Point p(1.0, 1.0), *pt;
Circle c(1.0, 1.0, 3.0);
Cylinder cl(1.0, 1.0, 3.0, 2.0);
pt=&p;
cout<<"The area of the pointer object pointed by point pointer is:
"<<pt->area()<<endl;

pt=&c;
cout<<"The area of the circle object pointed by point pointer is: "<<pt-
>area()<<end|;

pt=&cl;
cout<<"The area of the cylinder object pointed by point pointer is:
"<<pt->area()<<endl;

return O;

6/12/2012 Dr. Md. Humayun Kabir

Run-time Polymorphism by Virtual
Function

#include <iostream>

using namespace std;

class Point{

protected:
double x;
double vy;

public:
Point() {x=0.0; y=0.0;}
Point(double x, double y);
virtual double area(){return O;}

I3

Point::Point(double x, double y){
this->x=x; this->y=y;

}

6/12/2012 Dr. Md. Humayun Kabir

Run-time Polymorphism by Virtual
Function

class Circle: public Point{
protected:
double radious;
public:
Circle(){radious=0.0;}
Circle(double x, double y, double r);
double area();

I3

Circle::Circle(double x, double y, double r) : Point(x,y) {
radious=r;

}

double Circle::area(){
return 3.14*radious*radious;

}

6/12/2012 Dr. Md. Humayun Kabir

Run-time Polymorphism by Virtual
Function

class Cylinder:public Circle{
double height;
public:
Cylinder(){height=0.0;}
Cylinder(double x, double y, double r, double h);
double area();

;

Cylinder::Cylinder(double x, double y, double r, double h): Circle(x,y,r){
height=h;

}

double Cylinder::area(){
return 3.14*radious*radious*height;

}

6/12/2012 Dr. Md. Humayun Kabir

Run-time Polymorphism by Virtual
Function

int main(){
Point p(1.0, 1.0), *pt;
Circle c(1.0, 1.0, 3.0);
Cylinder cl(1.0, 1.0, 3.0, 2.0);
pt=&p;
cout<<"The area of the pointer object pointed by point pointer is:
"<<pt->area()<<endl;

pt=&c;
cout<<"The area of the circle object pointed by point pointer is: "<<pt-
>area()<<end|;

pt=&cl;
cout<<"The area of the cylinder object pointed by point pointer is:
"<<pt->area()<<endl;

return O;

6/12/2012 Dr. Md. Humayun Kabir

Run-time Polymorphism by Pure
Virtual Function

#include <iostream>

using namespace std,

class Point{

protected:
double x;
double vy;

public:
Point() {x=0.0; y=0.0;}
Point(double x, double y);
virtual double area()=0;

I3

Point::Point(double x, double y){
this->x=x; this->y=y;

}

6/12/2012 Dr. Md. Humayun Kabir

Run-time Polymorphism by Pure
Virtual Function

class Circle: public Point{
protected:
double radious;
public:
Circle(){radious=0.0;}
Circle(double x, double y, double r);
double area();

I3

Circle::Circle(double x, double y, double r) : Point(x,y) {
radious=r;

}

double Circle::area(){
return 3.14*radious*radious;

}

6/12/2012 Dr. Md. Humayun Kabir

Run-time Polymorphism by Pure
Virtual Function

class Cylinder:public Circle{
double height;
public:
Cylinder(){height=0.0;}
Cylinder(double x, double y, double r, double h);
double area();

;

Cylinder::Cylinder(double x, double y, double r, double h): Circle(x,y,r){
height=h;

}

double Cylinder::area(){
return 3.14*radious*radious*height;

}

6/12/2012 Dr. Md. Humayun Kabir

Run-time Polymorphism by Pure
Virtual Function

int main(){
//Point p(1.0, 1.0), *pt;
Point *pt;
Circle c(1.0, 1.0, 3.0);
Cylinder cl(1.0, 1.0, 3.0, 2.0);
pt=&c;
cout<<"The area of the circle object pointed by point pointer is: "<<pt-
>area()<<end];
pt=&cl;

cout<<"The area of the cylinder object pointed by point pointer is:
"<<pt->area()<<end];

return O;

6/12/2012 Dr. Md. Humayun Kabir

cout<<“Thank You” <<endl;
G

cout<<*Have a Good Day”<<end];

6/12/2012 Dr. Md. Humayun Kabir

