
C++ Inheritance

Dr. Md. Humayun Kabir
CSE Department, BUET

C++ Inheritance

Inheritance allows one object to inherit
b i bl d/ b f timember variables and/or member functions

from another object.
I h it d bj t i ll d b bj tInherited object is called base object
Inheriting object is called derived object
H l t it bl dHelps programmer to write reusable code
Helps programmer to write compact code

6/12/2012 Dr. Md. Humayun Kabir2

C++ Inheritance

Inheritance starts with defining the base class first.
class base-class-name {

…….
};

Derived class is then defined using the base class
The general form of deriving a class from another class is as g g
follows:
class derived-class-name: access base-class-name {

………
};};

Access can be either private or public or protected
Default access is private for derived class, public for derived
structure

6/12/2012 Dr. Md. Humayun Kabir3

C++ Inheritance: Base Class

#include <iostream>
using namespace std;using namespace std;
class CRectangle {

int width, length; , g ;
public:

void set_width (int w) {width=w;}
id t l th (i t l){l th l }void set_length (int l){length=l;}

int area () {return (width*length);}
};

6/12/2012 Dr. Md. Humayun Kabir4

};

C++ Inheritance: Derived Class

class Box: public CRectangle {
i t h i htint height;
public:

void set height (int h){height=h;}void set_height (int h){height=h;}
int volume () {return area()*height);}

/*private members of the base class cannot be accessed by the derived class *// private members of the base class cannot be accessed by the derived class /

//int volume () {return width*length*height);}
};

6/12/2012 Dr. Md. Humayun Kabir5

C I h it B d D i dC++ Inheritance: Base and Derived
Objects

int main(){
CRectangle rect;
Box box;
rect.set_width(3);
rect.set_length(4);
box.set width(3); //inheritedbox.set_width(3); //inherited
box.set_length(4); //inherited
box.set_height(5);
cout<<“Rectangle area: “<<rect.area()<<endl;
cout<<“Box base area: “<<box area()<<endl; //inheritedcout<< Box base area: <<box.area()<<endl; //inherited
cout<<“Box volume: “<<box.volume()<<endl;
return 0;

}

6/12/2012 Dr. Md. Humayun Kabir6

C++ Inheritance: Derived Class

class Box: private CRectangle {
i t h i htint height;
public:

void set height (int h){height=h;}void set_height (int h){height=h;}
int volume () {return area()*height);}

};};

6/12/2012 Dr. Md. Humayun Kabir7

C I h it B d D i dC++ Inheritance: Base and Derived
Objects

int main(){
CRectangle rect;
Bo boBox box;
rect.set_width(3);
rect.set_length(4);
//box.set_width(3);
//box set length(4);//box.set_length(4);
box.set_height(5);
cout<<“Rectangle area: “<<rect.area()<<endl; //it’s public to CRectangle object
/* function area() is private to Box object cannot be accessed outside Box
object */object /
//cout<<“Box base area: “<<box.area()<<endl;
cout<<“Box volume: “<<box.volume()<<endl; //Will not produce expected result
return 0;

}

6/12/2012 Dr. Md. Humayun Kabir8

}

C++ Inheritance: Base Class

#include <iostream>
using namespace std;using namespace std;
class CRectangle {

protected:
i t idth l thint width, length;
public:

void set_width (int w) {width=w;}
void set_length (int l){length=l;}
int area () {return (width*length);}

};

6/12/2012 Dr. Md. Humayun Kabir9

};

C++ Inheritance: Derived Class

class Box: public CRectangle {
i t h i htint height;
public:

void set height (int h){height=h;}void set_height (int h){height=h;}
/*protected members of the base class can be accessed by the
derived class */

int volume () {return width*length*height);}
};

6/12/2012 Dr. Md. Humayun Kabir10

C I h it B d D i dC++ Inheritance: Base and Derived
Objects

int main(){
CRectangle rect;
Box box;
rect.set_width(3);
rect.set_length(4);
box.set width(3);box.set_width(3);
box.set_length(4);
box.set_height(5);
cout<<“Rectangle area: “<<rect.area()<<endl;
cout<<“Box base area: “<<box area()<<endl;cout<< Box base area: <<box.area()<<endl;
cout<<“Box volume: “<<box.volume()<<endl;
return 0;

}

6/12/2012 Dr. Md. Humayun Kabir11

C I h it ith C t t dC++ Inheritance with Constructor and
Destructor

#include <iostream>
using namespace std;
class CRectangle {class CRectangle {

int *width, *length;
public:

CRectangle ();
CRectangle (int,int);

CR t l ()~CRectangle ();
int area () {return (*width * *length);}

};
CRectangle::CRectangle () {

width = new int; ;
length = new int;
*width = 0;
*length = 0;

}

6/12/2012 Dr. Md. Humayun Kabir12

C I h it ith C t t dC++ Inheritance with Constructor and
Destructor

CRectangle::CRectangle (int a, int b) {
width = new int;width new int;
length = new int;
*width = a;
*length = b;length b;

}

CRectangle::~CRectangle () {CRectangle::~CRectangle () {
delete width;
delete length;

}

6/12/2012 Dr. Md. Humayun Kabir13

}

C I h it ith C t t dC++ Inheritance with Constructor and
Destructor

class Box:public CRectangle{
int *height;g
public:
Box();
Box(int, int, int);
~Box();
int volume(){ return area()*(*height);}

};
B B () {Box::Box () {

height=new int;
height=0;

}

6/12/2012 Dr. Md. Humayun Kabir14

}

C I h it ith C t t dC++ Inheritance with Constructor and
Destructor

Box::Box (int w, int l, int h):CRectangle(w,l) {
height=new int;
height=h;

}
Box::~Box () {

delete height;
}

6/12/2012 Dr. Md. Humayun Kabir15

}

C I h it B d D i dC++ Inheritance: Base and Derived
Objects

int main(){
CRectangle rect(3,4);CRectangle rect(3,4);
Box box (3,4,5);
cout<<“Rectangle area: “<<rect.area()<<endl;
cout<<“Box base area: “<<box area()<<endl;cout<< Box base area: <<box.area()<<endl;
cout<<“Box volume: “<<box.volume()<<endl;
return 0;

}}

6/12/2012 Dr. Md. Humayun Kabir16

C++ Multiple Inheritance

A derived class can inherit more than one base
classclass
It can happen in two ways:

– A derived class can be used as the base class for
another derived class: creates a multilevel class
hierarchy

– A derived class can directly inherit more than one base y
class

6/12/2012 Dr. Md. Humayun Kabir17

C++ Multiple Inheritance: Multilevel class
hierarchy

class Point{
double x;double x;
double y;
public:

Point(double x y){this->x=x; this->y->y;}Point(double x, y){this >x x; this >y >y;}
void get_xy(double &x, double &y){x=this->x, y=this->y;}

}

6/12/2012 Dr. Md. Humayun Kabir18

C++ Inheritance: : Multilevel class hierarchy

class Circle: public Point{
protected:protected:

double rad;
public:

Circle(double x, double y, double r);
double area(){return 3.14*rad*rad;}

}}
Circle::Circle(double x, double y, double r):Point(x,y){

rad=r;
}

6/12/2012 Dr. Md. Humayun Kabir19

}

C++ Inheritance: : Multilevel class hierarchy

class Cylinder: public Circle{
double height;double height;
public:

Cylinder(double x, double y, double r, double h);
double volume(){return 3.14*rad*rad*height;}

}
Cylinder::Cylinder(double x, double y, double r, double h):Circle(x,y,r){y y (y) (y){

height=h;
}

6/12/2012 Dr. Md. Humayun Kabir20

C++ Multiple Direct Inheritance

class Point{
double x;double x;
double y;
public:

Point(double x, y){this->x=x; this->y->y;}
void get_xy(double &x, double &y){x=this->x, y=this->y;}

}}

6/12/2012 Dr. Md. Humayun Kabir21

C++ Multiple Direct Inheritance

class Circle{
protected:protected:

double rad;
public:

Circle(double r) {rad=r;}
d bl (){ 3 14* d* d }double area(){return 3.14*rad*rad;}

}

6/12/2012 Dr. Md. Humayun Kabir22

C++ Multiple Direct Inheritance

class Cylinder: public Point, public Circle{
do ble heightdouble height;
public:

Cylinder(double x, double y, double r, double h);
double volume(){return 3.14*rad*rad*height;}(){ g }

}
Cylinder::Cylinder(double x, double y, double r, double h):Point (x,y),Circle(r)
{

height=h;height=h;
}

6/12/2012 Dr. Md. Humayun Kabir23

C M lti l I h it Vi t l BC++ Multiple Inheritance: Virtual Base
Class

Virtual Base Class prevents a derived class to inherit more
than one copy of the base classthan one copy of the base class
This may happen when a derived class directly inherits two
base classes and these base classes are also derived from
another common base class.another common base class.

Base Class

Derived1 Class Derived1 Class

6/12/2012 Dr. Md. Humayun Kabir24
Derived3 Class

C M lti l I h it Vi t l BC++ Multiple Inheritance: Virtual Base
Class

#include <iostream>
using namespace std;using namespace std;
class Base{

protected:
int x;

public:
Base (int x) {this->x=x;}() { }
int getx() {return x;}

};

6/12/2012 Dr. Md. Humayun Kabir25

C M lti l I h it Vi t l BC++ Multiple Inheritance: Virtual Base
Class

class Derived1: public Base{
protected:protected:

int y;
public:

Derived1 (int x, int y);
int gety() {return y;}

};}
Derived1::Derived1(int x, int y): Base (x){

this->y=y;
}

6/12/2012 Dr. Md. Humayun Kabir26

}

C M lti l I h it Vi t l BC++ Multiple Inheritance: Virtual Base
Class

class Derived2: public Base{
protected:protected:

int z;
public:

Derived2 (int x, int z);
int getz() {return z;}

};}
Derived2::Derived2 (int x, int z): Base(x) {

this->z=z;
}

6/12/2012 Dr. Md. Humayun Kabir27

}

C M lti l I h it Vi t l BC++ Multiple Inheritance: Virtual Base
Class

class Derived3: public Derived1, public Derived2{
protected:protected:

int l;
public:

Derived3 (int x int y int z int l);Derived3 (int x, int y, int z, int l);
int getl() {return l;}

};
Derived3::Derived3 (int x int y int z int l): Derived1(x y)Derived3::Derived3 (int x, int y, int z, int l): Derived1(x,y),

Derived2(x,z) {
this->l=l;

}

6/12/2012 Dr. Md. Humayun Kabir28

}

C M lti l I h it Vi t l BC++ Multiple Inheritance: Virtual Base
Class

int main(){
Derived3 d3(1 2 3 4);Derived3 d3(1,2,3,4);
//cout<<"x: "<<d3.getx()<<endl; //ambiguous
cout<<"y: "<<d3.gety()<<endl;y g y() ;
cout<<"z: "<<d3.getz()<<endl;
cout<<"l: "<<d3.getl()<<endl;

return 0;
}

6/12/2012 Dr. Md. Humayun Kabir29

}

C M lti l I h it Vi t l BC++ Multiple Inheritance: Virtual Base
Class

#include <iostream>
using namespace std;using namespace std;
class Base{

protected:
int x;int x;

public:
Base(){x=0;}
Base (int x) {this->x=x;}Base (int x) {this->x=x;}
void setx(int x){this->x=x;}
int getx() {return x;}

};

6/12/2012 Dr. Md. Humayun Kabir30

};

C M lti l I h it Vi t l BC++ Multiple Inheritance: Virtual Base
Class

class Derived1: virtual public Base{
protected:protected:

int y;
public:

Derived1 (int y){this->y=y;}Derived1 (int y){this >y y;}
Derived1 (int x, int y);
int gety() {return y;}

};};
Derived1::Derived1(int x, int y): Base (x){

this->y=y;
}

6/12/2012 Dr. Md. Humayun Kabir31

}

C M lti l I h it Vi t l BC++ Multiple Inheritance: Virtual Base
Class

class Derived2: virtual public Base{
protected:protected:

int z;
public:

Derived2 (int z){this->z=z;}Derived2 (int z){this >z z;}
Derived2 (int x, int z);
int getz() {return z;}

};};
Derived2::Derived2 (int x, int z): Base(x) {

this->z=z;
}

6/12/2012 Dr. Md. Humayun Kabir32

}

C M lti l I h it Vi t l BC++ Multiple Inheritance: Virtual Base
Class

class Derived3: public Derived1, public Derived2{
protected:

int lint l;
public:

Derived3 (int x, int y, int z, int l);
int getl() {return l;}

};};
/*
Derived3::Derived3 (int x, int y, int z, int l): Derived1(x,y), Derived2(x,z) {this->l=l;}
*/
Derived3::Derived3 (int x int y int z int l): Derived1(y) Derived2(z) {Derived3::Derived3 (int x, int y, int z, int l): Derived1(y), Derived2(z) {

//this->x=x;
this->l=l;

}

6/12/2012 Dr. Md. Humayun Kabir33

C M lti l I h it Vi t l BC++ Multiple Inheritance: Virtual Base
Class

int main(){
Derived3 d3(1,2,3,4);

cout<<"x: "<<d3.getx()<<endl; // print x: 0, which has been set by Base default
constructor
cout<<"y: "<<d3.gety()<<endl;
cout<<"z: "<<d3 getz()<<endl;cout<< z: <<d3.getz()<<endl;
cout<<"l: "<<d3.getl()<<endl;

d3.setx(5);
cout<<"x: "<<d3 getx()<<endl; // print x: 5 which has been set by setx()cout<< x: <<d3.getx()<<endl; // print x: 5, which has been set by setx()
function
cout<<"y: "<<d3.gety()<<endl;
cout<<"z: "<<d3.getz()<<endl;
cout<<"l: "<<d3.getl()<<endl;

6/12/2012 Dr. Md. Humayun Kabir34

cou d3 ge () e d ;
return 0;

}

C++ Inheritance: Function Overriding

#include <iostream>
using namespace std;
class Point{
protected:

double x;
double y;double y;

public:
Point() {x=0.0; y=0.0;}
Point(double x, double y);
d bl (){ t 0 }double area(){return 0;}

};
Point::Point(double x, double y){

this->x=x; this->y=y;

6/12/2012 Dr. Md. Humayun Kabir35

; y y;
}

C++ Inheritance: Function Overriding

class Circle: public Point{
protected:

double radious;
public:

Circle(){radious=0.0;}
Circle(double x double y double r);Circle(double x, double y, double r);
double area();

};
Circle::Circle(double x, double y, double r) : Point(x,y) {

diradious=r;
}
double Circle::area(){

return 3.14*radious*radious;

6/12/2012 Dr. Md. Humayun Kabir36

;
}

C++ Inheritance: Function Overriding

class Cylinder:public Circle{
double height;

public:
Cylinder(){height=0.0;}
Cylinder(double x, double y, double r, double h);
double area();double area();

};
Cylinder::Cylinder(double x, double y, double r, double h): Circle(x,y,r){

height=h;
}}
double Cylinder::area(){

return 3.14*radious*radious*height;
}

6/12/2012 Dr. Md. Humayun Kabir37

}

C++ Inheritance: Function Overriding

int main(){

Point p(1.0, 1.0);
Circle c(1.0, 1.0, 3.0);
Cylinder cl(1.0, 1.0, 3.0, 2.0);

cout<<"The area of the point is: "<<p.area()<<endl;
cout<<"The area of the circle is: "<<c.area()<<endl;
cout<<"The area of the cylinder is: "<<cl.area()<<endl;

return 0;
}

6/12/2012 Dr. Md. Humayun Kabir38

C I h it R tiC++ Inheritance: Run-time
Polymorphism

int main(){
Point p(1.0, 1.0), *pt;
Circle c(1.0, 1.0, 3.0);
Cylinder cl(1.0, 1.0, 3.0, 2.0);
pt=&p;
cout<<"The area of the pointer object pointed by point pointer is:cout<< The area of the pointer object pointed by point pointer is:
"<<pt->area()<<endl;
pt=&c;
cout<<"The area of the circle object pointed by point pointer is: "<<pt-
>area()<<endl;>area()<<endl;
pt=&cl;
cout<<"The area of the cylinder object pointed by point pointer is:
"<<pt->area()<<endl;
return 0;

6/12/2012 Dr. Md. Humayun Kabir39

return 0;
}

R ti P l hi b Vi t lRun-time Polymorphism by Virtual
Function

#include <iostream>
using namespace std;
class Point{
protected:

double x;
double y;double y;

public:
Point() {x=0.0; y=0.0;}
Point(double x, double y);
i t l d bl (){ t 0 }virtual double area(){return 0;}

};
Point::Point(double x, double y){

this->x=x; this->y=y;

6/12/2012 Dr. Md. Humayun Kabir40

; y y;
}

R ti P l hi b Vi t lRun-time Polymorphism by Virtual
Function

class Circle: public Point{
protected:

double radious;
public:

Circle(){radious=0.0;}
Circle(double x double y double r);Circle(double x, double y, double r);
double area();

};
Circle::Circle(double x, double y, double r) : Point(x,y) {

diradious=r;
}
double Circle::area(){

return 3.14*radious*radious;

6/12/2012 Dr. Md. Humayun Kabir41

;
}

R ti P l hi b Vi t lRun-time Polymorphism by Virtual
Function

class Cylinder:public Circle{
double height;

public:
Cylinder(){height=0.0;}
Cylinder(double x, double y, double r, double h);
double area();double area();

};
Cylinder::Cylinder(double x, double y, double r, double h): Circle(x,y,r){

height=h;
}}
double Cylinder::area(){

return 3.14*radious*radious*height;
}

6/12/2012 Dr. Md. Humayun Kabir42

}

R ti P l hi b Vi t lRun-time Polymorphism by Virtual
Function

int main(){
Point p(1.0, 1.0), *pt;
Circle c(1.0, 1.0, 3.0);
Cylinder cl(1.0, 1.0, 3.0, 2.0);
pt=&p;
cout<<"The area of the pointer object pointed by point pointer is:cout<< The area of the pointer object pointed by point pointer is:
"<<pt->area()<<endl;
pt=&c;
cout<<"The area of the circle object pointed by point pointer is: "<<pt-
>area()<<endl;>area()<<endl;
pt=&cl;
cout<<"The area of the cylinder object pointed by point pointer is:
"<<pt->area()<<endl;
return 0;

6/12/2012 Dr. Md. Humayun Kabir43

return 0;
}

R ti P l hi b PRun-time Polymorphism by Pure
Virtual Function

#include <iostream>
using namespace std;
class Point{
protected:

double x;
double y;double y;

public:
Point() {x=0.0; y=0.0;}
Point(double x, double y);
i t l d bl () 0virtual double area()=0;

};
Point::Point(double x, double y){

this->x=x; this->y=y;

6/12/2012 Dr. Md. Humayun Kabir44

; y y;
}

R ti P l hi b PRun-time Polymorphism by Pure
Virtual Function

class Circle: public Point{
protected:

double radious;
public:

Circle(){radious=0.0;}
Circle(double x double y double r);Circle(double x, double y, double r);
double area();

};
Circle::Circle(double x, double y, double r) : Point(x,y) {

diradious=r;
}
double Circle::area(){

return 3.14*radious*radious;

6/12/2012 Dr. Md. Humayun Kabir45

;
}

R ti P l hi b PRun-time Polymorphism by Pure
Virtual Function

class Cylinder:public Circle{
double height;

public:
Cylinder(){height=0.0;}
Cylinder(double x, double y, double r, double h);
double area();double area();

};
Cylinder::Cylinder(double x, double y, double r, double h): Circle(x,y,r){

height=h;
}}
double Cylinder::area(){

return 3.14*radious*radious*height;
}

6/12/2012 Dr. Md. Humayun Kabir46

}

R ti P l hi b PRun-time Polymorphism by Pure
Virtual Function

int main(){
//Point p(1.0, 1.0), *pt;
Point *pt;
Circle c(1.0, 1.0, 3.0);
Cylinder cl(1.0, 1.0, 3.0, 2.0);
pt=&c;pt &c;
cout<<"The area of the circle object pointed by point pointer is: "<<pt-
>area()<<endl;
pt=&cl;
cout<<"The area of the cylinder object pointed by point pointer is:cout<< The area of the cylinder object pointed by point pointer is:
"<<pt->area()<<endl;
return 0;

}

6/12/2012 Dr. Md. Humayun Kabir47

cout<<“Thank You”<<endl;

cout<<“Have a Good Day”<<endl;

6/12/2012 Dr. Md. Humayun Kabir48

