
C++ Operator Overloading
(More Polymorphism)

Dr. Md. Humayun Kabir
CSE Department, BUET

Operator Overloading

Operator overloading is a type of function
overloadingg
An operator is always overloaded relative to a class
(an user defined data type).
An overloaded operator gets a special meaningAn overloaded operator gets a special meaning
relative to its class. However, the operator does not
loose its original meaning relative to other data types
To overload an operator an operator function isTo overload an operator an operator function is
defined for the class
The operator function can be a member or a friend
function of the class

6/12/2012 Dr. Md. Humayun Kabir2

Operator Overloading Restrictions

You cannot overload :: (scope resolution), . (member
selection) * (member selection through pointer toselection), .* (member selection through pointer to
function), and ? (ternary conditional) operators
Overloading cannot change the original precedence g g g p
of the operator
The number of operands on which the operator
would be applicable cannot be changed toowould be applicable cannot be changed too.
Operator functions cannot have default arguments

6/12/2012 Dr. Md. Humayun Kabir3

Operator Overloading General Form

Prototype definition

class class-name{
……..

return-type operator # (arg-list);return type operator # (arg list);
};

Function definition
return-type class-name :: operator # (arg-list){

//operation to be performed
}

6/12/2012 Dr. Md. Humayun Kabir4

Overloading Binary Operator

#include <iostream>
using namespace std;
class CRectangle {

int width, height;
public:

CRectangle () {width=0, height=0;}CRectangle () {width 0, height 0;}
CRectangle (int,int);
CRectangle operator + (CRectangle rect2);
CRectangle operator + (int);
CR t l t (CR t l t2)CRectangle operator - (CRectangle rect2);
CRectangle operator = (CRectangle rect2);
int area () {return (width*height);}

};

6/12/2012 Dr. Md. Humayun Kabir5

};

Overloading Binary Operator

CRectangle::CRectangle (int a, int b) {
width = a; height = b;width = a; height = b;

}
CRectangle CRectangle::operator + (CRectangle

rect2){rect2){
CRectangle temp;
temp.width=width+rect2.width;
temp.height=height+rect2.height;
return temp;

}

6/12/2012 Dr. Md. Humayun Kabir6

}

Overloading Binary Operator

CRectangle CRectangle::operator + (int n){
CRectangle temp;
temp.width=width+n;
temp.height=height+n;
return temp;

}

6/12/2012 Dr. Md. Humayun Kabir7

Overloading Binary Operator

CRectangle CRectangle::operator - (CRectangle rect2){
CRectangle temp;CRectangle temp;
temp.width=width-rect2.width;
temp.height=height-rect2.height;
return temp;return temp;

}
CRectangle CRectangle::operator = (CRectangle rect2){

width=rect2 width;width=rect2.width;
height=rect2.height;
return *this;

}

6/12/2012 Dr. Md. Humayun Kabir8

}

Overloading Binary Operator

int main () {
CRectangle recta (3,4);
CRectangle rectb (5 6)CRectangle rectb (5,6);
CRectangle rectc;
cout << "recta area: " << recta.area() << endl;
cout << "rectb area: " << rectb.area() << endl;
rectc=recta+rectb;rectc=recta+rectb;
cout << "rectc area: " << rectc.area() << endl;
rectc=rectb-recta;
cout << "rectc area: " << rectc.area() << endl;
rectc=rectb+3;rectc=rectb+3;
cout << "rectc area: " << rectc.area() << endl;
return 0;

}

6/12/2012 Dr. Md. Humayun Kabir9

Overloading Binary Operator

#include <iostream>
using namespace std;
class CRectangle {

int *width, *height;
public:

CRectangle ();CRectangle ();
CRectangle (int,int);
CRectangle(const CRectangle &r);
CRectangle operator + (const CRectangle &rect2);
CR t l t (t CR t l & t2)CRectangle operator = (const CRectangle &rect2);
~CRectangle ();
int area () {return (*width * *height);}

};

6/12/2012 Dr. Md. Humayun Kabir10

};

Overloading Binary Operator

CRectangle::CRectangle () {
width = new int;
height = new int;
*width = 0;
*height = 0;height 0;

}

CRectangle::CRectangle (int a, int b) {
idth i twidth = new int;

height = new int;
*width = a;
*height = b;

6/12/2012 Dr. Md. Humayun Kabir11

height b;
}

Overloading Binary Operator

CRectangle::CRectangle(const CRectangle &r){
width=new int;width new int;
height=new int;
*width=*r.width;
*height=*r height;height= r.height;

}

CRectangle::~CRectangle () {CRectangle::~CRectangle () {
delete width;
delete height;

}

6/12/2012 Dr. Md. Humayun Kabir12

}

Overloading Binary Operator

CRectangle CRectangle::operator + (CRectangle &rect2){
CRectangle temp;g p;
*temp.width=*width + *rect2.width;
*temp.height=*height + *rect2.height;
return temp;

}
CRectangle CRectangle::operator = (CRectangle &rect2){

*width=*rect2.width;
*h i ht * t2 h i ht*height=*rect2.height;
return *this;

}

6/12/2012 Dr. Md. Humayun Kabir13

Overloading Binary Operator

int main () {
CRectangle recta (3 4) rectb(5 6);CRectangle recta (3,4), rectb(5,6);
CRectangle rectc;
rectc=recta+rectb;rectc recta rectb;
cout << "recta area: " << recta.area() << endl;
cout << "rectb area: " << rectb.area() << endl;
cout << "rectc area: " << rectc.area() << endl;
return 0;

}

6/12/2012 Dr. Md. Humayun Kabir14

}

Overloading Binary Operator

CRectangle larger(CRectangle ra, CRectangle rb){
if(ra.area()>rb.area())(() ())

return ra;
else

return rb;
}

6/12/2012 Dr. Md. Humayun Kabir15

Overloading Binary Operator

int main () {
CRectangle recta (3,4), rectb(5,6);
CRectangle rectc=recta; //this will call copy constructorCRectangle rectc recta; //this will call copy constructor
//CRectangle rect_larger;
//CRectangle rectd;
//rectd=rectb;
/*Following statement will call copy constructor and cause
th t hthe program to crash
*/
//rect_larger=larger(recta, rectb);
cout << "recta area: " << recta.area() << endl;
cout << "rectb area: " << rectb.area() << endl; () ;
cout << "rectc area: " << rectc.area() << endl;
/*this will call both copy constructor and destructor 3 times */
cout<< “large area: “<<larger(recta,rectb).area();
//cout << "rect_larger area: " << rect_larger.area() << endl;
return 0;

6/12/2012 Dr. Md. Humayun Kabir16

return 0;
}

Overloading Unary Operator

class CRectangle {
int width height;int width, height;
public:

CRectangle () {width=0, height=0;}
CR t l (i t i t)CRectangle (int,int);
CRectangle operator ++ ();
CRectangle operator ++ (int notused);

………………..
};

6/12/2012 Dr. Md. Humayun Kabir17

};

Overloading Unary Operator

CRectangle CRectangle::operator ++ (){
width++;width ;
height++;
return *this;

}}
CRectangle CRectangle::operator ++ (int notused){

CRectangle temp=*this;
width++;width++;
height++;
return temp;

}

6/12/2012 Dr. Md. Humayun Kabir18

}

Overloading Unary Operator

int main () {
CRectangle recta (3,4), rectb(5,6), rectc;
cout << "recta area: " << recta area() << endl;cout << recta area: << recta.area() << endl;
recta++;
cout << "recta area: " << recta.area() << endl;
++recta;
cout << "recta area: " << recta.area() << endl;cout << recta area: << recta.area() << endl;
cout << "rectb area: " << rectb.area() << endl;
rectc=rectb++;
cout << "rectb area: " << rectb.area() << endl;
cout << "rectc area: " << rectb.area() << endl;

rectc=++rectb;
cout << "rectb area: " << rectb.area() << endl;
cout << "rectc area: " << rectb.area() << endl;
return 0;

6/12/2012 Dr. Md. Humayun Kabir19

;
}

Overloading Unary Operator

class CRectangle {
int width, height;int width, height;
public:

CRectangle () {width=0, height=0;}
CRectangle (int int);CRectangle (int,int);
CRectangle operator - (CRectangle rect2);
CRectangle operator - ();
void getDimensions(int &w int &h);void getDimensions(int &w, int &h);

………………..
};

6/12/2012 Dr. Md. Humayun Kabir20

};

Overloading Unary Operator

CRectangle CRectangle::operator - (CRectangle rect2){
CRectangle temp;CRectangle temp;
temp.width=width-rect2.width;
temp.height=height-rect2.height;
return temp;return temp;

}
CRectangle CRectangle::operator - (){

width= - width;width= - width;
height= - height;
return *this;

}

6/12/2012 Dr. Md. Humayun Kabir21

}

Overloading Unary Operator

void CRectangle::getDimensions(int &w, int &h){
w=width;w=width;
h=height;

}

6/12/2012 Dr. Md. Humayun Kabir22

Overloading Unary Operator

int main () {
int width, height;
CRectangle recta (3,4), rectb(5,6), rectc;
cout << "recta area: " << recta.area() << endl;
cout << "rectb area: " << rectb.area() << endl;
rectc=rectb-recta;rectc rectb recta;
cout << "rectc area: " << rectc.area() << endl;
recta.getDimensions(width, height);
cout << “width: " << width << “, height: “<<height<<endl;

t trecta=-recta;
recta.getDimensions(width, height);
cout << “width: " << width << “, height: “<<height<<endl;
return 0;

6/12/2012 Dr. Md. Humayun Kabir23

;
}

Overloading Logical Operator

class CRectangle {
int width height;int width, height;
public:

CRectangle () {width=0, height=0;}
CR t l (i t i t)CRectangle (int,int);
bool operator == (CRectangle rect2);
bool operator > (CRectangle rect2);
int area () {return (width * height);}

};

6/12/2012 Dr. Md. Humayun Kabir24

};

Overloading Logical Operator

bool CRectangle::operator == (CRectangle rect2){
return this->area()==rect2.area();return this >area() rect2.area();

}
bool CRectangle::operator > (CRectangle rect2){

return this->area()>rect2 area();return this->area()>rect2.area();
}

6/12/2012 Dr. Md. Humayun Kabir25

Overloading Logical Operator

int main () {
CRectangle recta (3,4), rectb(2,6), rectc(8,9);CRectangle recta (3,4), rectb(2,6), rectc(8,9);
if(recta==rectb){

cout<<“two rectangles are of equal size”<<endl;
}}
if(rectc>rectb){

cout<<“the first rectangle is of larger size”<<endl;
}}

return 0;
}

6/12/2012 Dr. Md. Humayun Kabir26

}

Friend Function to Overload Operator

class CRectangle {
int width, height;
public:

CRectangle () {width=0, height=0;}
CRectangle (int w,int h){width=w, height=h;}
friend CRectangle operator + (CRectangle rect1, CRectangle rect2);friend CRectangle operator (CRectangle rect1, CRectangle rect2);
friend CRectangle operator + (CRectangle rect1, int n);
friend CRectangle operator + (int n, CRectangle rect2);
int area () {return (width*height);}

};};

6/12/2012 Dr. Md. Humayun Kabir27

Friend Function to Overload Operator

CRectangle operator + (CRectangle rect1, CRectangle rect2){
CRectangle temp;
temp.width=rect1.width+rect2.width;
temp.height=rect1.height+rect2.height;
return temp;

}}

CRectangle operator + (CRectangle rect1, int n){
CRectangle temp;
temp width=rect1 width+n;temp.width=rect1.width+n;
temp.height=rect1.height+n;
return temp;

}

6/12/2012 Dr. Md. Humayun Kabir28

Friend Function to Overload Operator

CRectangle operator + (int n, CRectangle rect2){
CRectangle temp;
temp.width=rect2.width+n;
temp.height=rect2.height+n;
return temp;

}}

6/12/2012 Dr. Md. Humayun Kabir29

Friend Function to Overload Operator

int main () {
CRectangle recta (3,4);
CRectangle rectb (5,6);
CRectangle rectc;
cout << "recta area: " << recta.area() << endl;
cout << "rectb area: " << rectb.area() << endl;cout << rectb area: << rectb.area() << endl;
rectc=recta+rectb;
cout << "rectc area: " << rectc.area() << endl;
rectc=recta+2;

t " t " t () dlcout << "rectc area: " << rectc.area() << endl;
rectc=3+rectb;
cout << "rectc area: " << rectc.area() << endl;
return 0;

6/12/2012 Dr. Md. Humayun Kabir30

;
}

cout<<“Thank You”<<endl;

cout<<“Have a Good Day”<<endl;

6/12/2012 Dr. Md. Humayun Kabir31

