C++ Operator Overloading
(More Polymorphism)

Dr. Md. Humayun Kabir
CSE Department, BUET



Operator Overloading
S

Operator overloading Is a type of function
overloading

An operator Is always overloaded relative to a class
(an user defined data type).

An overloaded operator gets a special meaning
relative to its class. However, the operator does not
loose its original meaning relative to other data types

To overload an operator an operator function is
defined for the class

The operator function can be a member or a friend
function of the class

6/12/2012 Dr. Md. Humayun Kabir



Operator Overloading Restrictions
—

e You cannot overload :: (scope resolution), . (member
selection), .* (member selection through pointer to
function), and ? (ternary conditional) operators

e Overloading cannot change the original precedence
of the operator

e The number of operands on which the operator
would be applicable cannot be changed too.

e Operator functions cannot have default arguments

6/12/2012 Dr. Md. Humayun Kabir



Operator Overloading General Form
S

e Prototype definition

class class-name{

return-type operator # (arg-list);

J

e Function definition

return-type class-name :: operator # (arg-list){
//loperation to be performed

}

6/12/2012 Dr. Md. Humayun Kabir



Overloading Binary Operator
.

#include <iostream>
using namespace std,;
class CRectangle {
int width, height;
public:
CRectangle () {width=0, height=0;}
CRectangle (int,int);
CRectangle operator + (CRectangle rect2);
CRectangle operator + (int);
CRectangle operator - (CRectangle rect?2);
CRectangle operator = (CRectangle rect2);
int area () {return (width*height);}

6/12/2012 Dr. Md. Humayun Kabir



Overloading Binary Operator
.

CRectangle::CRectangle (int a, int b) {
width = a; height = b;
}

CRectangle CRectangle::operator + (CRectangle
rect2){

CRectangle temp;
temp.width=width+rect2.width,;
temp.height=height+rect2.height;
return temp;

6/12/2012 Dr. Md. Humayun Kabir



Overloading Binary Operator
.

CRectangle CRectangle::operator + (int n){
CRectangle temp;
temp.width=width+n;
temp.height=height+n;
return temp;

}

6/12/2012 Dr. Md. Humayun Kabir



Overloading Binary Operator
.

CRectangle CRectangle::operator - (CRectangle rect2){
CRectangle temp;
temp.width=width-rect2.width;
temp.height=height-rect2.height;
return temp;

}

CRectangle CRectangle::operator = (CRectangle rect2){
width=rect2.width;
height=rect2.height;
return *this;

6/12/2012 Dr. Md. Humayun Kabir



Overloading Binary Operator
.

int main () {
CRectangle recta (3,4);
CRectangle rectb (5,6);
CRectangle rectc;
cout << "recta area: " <<recta.area() << endl;
cout << "rectb area: " << rectb.area() << endl;
rectc=recta+rectb;
cout << "rectc area: " <<rectc.area() << endl;
rectc=rectb-recta;
cout << "rectc area: " <<rectc.area() << endl;
rectc=rectb+3;
cout << "rectc area: " <<rectc.area() << endl;
return O;

6/12/2012 Dr. Md. Humayun Kabir



Overloading Binary Operator
.

#include <iostream>
using namespace std,;
class CRectangle {
Int *width, *height;
public:
CRectangle ();
CRectangle (int,int);
CRectangle(const CRectangle &r);
CRectangle operator + (const CRectangle &rect?2);
CRectangle operator = (const CRectangle &rect?2);
~CRectangle ();
int area () {return (*width * *height);}

6/12/2012 Dr. Md. Humayun Kabir



Overloading Binary Operator
.

CRectangle::CRectangle () {
width = new Int;
height = new int;
*width = 0;

*height = 0;

}

CRectangle::CRectangle (int a, int b) {
width = new int;
height = new int;
*width = a;
*height = b;

6/12/2012 Dr. Md. Humayun Kabir



Overloading Binary Operator
.

CRectangle::CRectangle(const CRectangle &r){
width=new int;
height=new int;
*width=*r.width;
*height=*r.height;
}

CRectangle::~CRectangle () {
delete width;
delete height;

6/12/2012 Dr. Md. Humayun Kabir



Overloading Binary Operator
.

CRectangle CRectangle::operator + (CRectangle &rect2){
CRectangle temp;
*temp.width=*width + *rect2.width;
*temp.height=*height + *rect2.height;
return temp;

}

CRectangle CRectangle::operator = (CRectangle &rect2){
*width=*rect2.width:;:
*height=*rect2.height;
return *this;

}

6/12/2012 Dr. Md. Humayun Kabir



Overloading Binary Operator
.

iInt main () {
CRectangle recta (3,4), rectb(5,6);
CRectangle rectc;

rectc=recta+rectb;

cout << "recta area: " << recta.area() << endl;
cout << "rectb area: " <<rectb.area() << endl;
cout << "rectc area: " <<rectc.area() << endl;
return O;

6/12/2012 Dr. Md. Humayun Kabir



Overloading Binary Operator
.

CRectangle larger(CRectangle ra, CRectangle rb){
If(ra.area()>rb.area())
return ra;
else
return rb;

6/12/2012 Dr. Md. Humayun Kabir



Overloading Binary Operator
.

int main () {
CRectangle recta (3,4), rectb(5,6);
CRectangle rectc=recta; //this will call copy constructor
//ICRectangle rect_larger;
//CRectangle rectd;
/lrectd=rectb;
/*Following statement will call copy constructor and cause
the program to crash
*/
/llrect_larger=larger(recta, rectb);
cout << "recta area: " <<recta.area() << endl;
cout << "rectb area: " <<rectb.area() << endl;
cout << "rectc area: " <<rectc.area() << endl;
/*this will call both copy constructor and destructor 3 times */
cout<< “large area: “<<larger(recta,rectb).area();
/lcout << "rect_larger area: " <<rect_larger.area() << endl;
return O;

6/12/2012 Dr. Md. Humayun Kabir



Overloading Unary Operator
—

class CRectangle {
Int width, height;
public:

CRectangle () {width=0, height=0;}
CRectangle (int,int);

CRectangle operator ++ ();
CRectangle operator ++ (int notused);

6/12/2012 Dr. Md. Humayun Kabir



Overloading Unary Operator
—

CRectangle CRectangle::operator ++ (){
width++;
height++;
return *this;
}
CRectangle CRectangle::operator ++ (int notused){
CRectangle temp=*this;
width++;
height++;
return temp;

6/12/2012 Dr. Md. Humayun Kabir



Overloading Unary Operator
—

int main () {
CRectangle recta (3,4), rectb(5,6), rectc;
cout << "recta area: " <<recta.area() << endl;
rectat++;
cout << "recta area: " <<recta.area() << endl;
++recta;

cout << "recta area: " <<recta.area() << endl;
cout << "rectb area: " <<rectb.area() << endl;
rectc=rectb++;

cout << "rectb area: " <<rectb.area() << endl;
cout << "rectc area: " <<rectb.area() << endl;

rectc=++rectb;

cout << "rectb area: " <<rectb.area() << endl;
cout << "rectc area: " <<rectb.area() << endl;
return O;

6/12/2012 Dr. Md. Humayun Kabir



Overloading Unary Operator
—

class CRectangle {

Int width, height;

public:
CRectangle () {width=0, height=0;}
CRectangle (int,int);
CRectangle operator - (CRectangle rect?2);
CRectangle operator - ();
void getDimensions(int &w, int &h);

6/12/2012 Dr. Md. Humayun Kabir



Overloading Unary Operator

CRectangle CRectangle::operator - (CRectangle rect2){
CRectangle temp;
temp.width=width-rect2.width;
temp.height=height-rect2.height;
return temp;

}

CRectangle CRectangle::operator - (){
width= - width;
height= - height;
return *this;

}

6/12/2012 Dr. Md. Humayun Kabir



Overloading Unary Operator
—

void CRectangle::getDimensions(int &w, int &h){
w=width;
h=height;

}

6/12/2012 Dr. Md. Humayun Kabir



Overloading Unary Operator
—

int main () {
int width, height;
CRectangle recta (3,4), rectb(5,6), rectc;
cout << "recta area: " <<recta.area() << endl,
cout << "rectb area: " << rectb.area() << endl,
rectc=rectb-recta,
cout << "rectc area: " <<rectc.area() << endl,
recta.getDimensions(width, height);
cout << “width: " << width << “, height: “<<height<<endl;
recta=-recta;
recta.getDimensions(width, height);
cout << “width: " << width << “, height: “<<height<<endlI;
return O;

6/12/2012 Dr. Md. Humayun Kabir



Overloading Logical Operator
.

class CRectangle {

Int width, height;

public:
CRectangle () {width=0, height=0;}
CRectangle (int,int);
bool operator == (CRectangle rect2);
bool operator > (CRectangle rect2);
Int area () {return (width * height);}

6/12/2012 Dr. Md. Humayun Kabir



Overloading Logical Operator
.

bool CRectangle::operator == (CRectangle rect2){
return this->area()==rect2.area();

}

bool CRectangle::operator > (CRectangle rect2){
return this->area()>rect2.area();

}

6/12/2012 Dr. Md. Humayun Kabir



Overloading Logical Operator
.

Int main () {
CRectangle recta (3,4), rectb(2,6), rectc(8,9);
If(recta==rectb){
cout<<“two rectangles are of equal size” <<endl;

}
if(rectc>rectb){

cout<<“the first rectangle is of larger size” <<endl;
}

return O;

6/12/2012 Dr. Md. Humayun Kabir



Friend Function to Overload Operator

class CRectangle {

int width, height;

public:
CRectangle () {width=0, height=0;}
CRectangle (int w,int h){width=w, height=h;}
friend CRectangle operator + (CRectangle rectl, CRectangle rect2);
friend CRectangle operator + (CRectangle rectl, int n);
friend CRectangle operator + (int n, CRectangle rect2);
int area () {return (width*height);}

6/12/2012 Dr. Md. Humayun Kabir



Friend Function to Overload Operator
c

CRectangle operator + (CRectangle rectl, CRectangle rect2){
CRectangle temp;
temp.width=rectl.width+rect2.width;
temp.height=rectl.height+rect2.height;
return temp;

}

CRectangle operator + (CRectangle rectl, int n){
CRectangle temp;
temp.width=rectl.width+n;
temp.height=rectl.height+n;
return temp;

6/12/2012 Dr. Md. Humayun Kabir



Friend Function to Overload Operator
c

CRectangle operator + (int n, CRectangle rect2){
CRectangle temp;
temp.width=rect2.width+n;
temp.height=rect2.height+n;
return temp;

6/12/2012 Dr. Md. Humayun Kabir



Friend Function to Overload Operator
c

int main () {
CRectangle recta (3,4);
CRectangle rectb (5,6);
CRectangle rectc;
cout << "recta area: " <<recta.area() << endl,
cout << "rectb area: " << rectb.area() << endl;
rectc=rectatrectb;
cout << '"rectc area: " <<rectc.area() << endl,
rectc=recta+2;
cout << '"rectc area: " <<rectc.area() << endl,
rectc=3+rectb;
cout << '"rectc area: " <<rectc.area() << endl,
return O;

6/12/2012 Dr. Md. Humayun Kabir



cout<<“Thank You” <<endl;
G

cout<<*Have a Good Day”<<end];

6/12/2012 Dr. Md. Humayun Kabir



