
C++ TemplatesC++ Templates

Dr. Md. Humayun Kabir
CSE Department, BUET

C++ Templates

Templates allows to create a generic function or class for
several data types instead of creating several specificseveral data types instead of creating several specific
functions or classes for several data types.
A generic function or class defines a general set of
operations that will be applied to the data (of variousoperations that will be applied to the data (of various
types).
The type of the data is specified as the parameter
whenever a specific version of the function or class for a e e e a spec c e s o o e u c o o c ass o a
specific data type is required.
Helps programmer to write reusable code
Helps programmer to write compact code

6/12/2012 Dr. Md. Humayun Kabir2

Helps programmer to write compact code

C++ Generic Function with Template

Template allows to create a function that can
automatically overload itself !!!y
General form
template <class Ttype1, class Ttype2, …, class TtypeN>
ret-type func-name (param list)
{{

// body of function
}
Here,

template is a keyword
We can use keyword “typename” in place of keyword “class”
“TtypeN” is the placeholder for data types used by the function

6/12/2012 Dr. Md. Humayun Kabir3

C++ Generic Function with Template

template <class X> void swapargs(X &a, X &b) {
XX temp;
temp = a;
a = b;a b;
b = temp;

}
X X Xtemplate <class X> void print (X x, X y) {

cout << x << “, ” << y << endl;
}

6/12/2012 Dr. Md. Humayun Kabir4

}

C++ Generic Function with Template

void main() {
int i = 10 j = 20;int i 10, j 20;
double x = 11.11, y = 22.22;
print(i, j); // 10, 20

(i j) // (i t i t)swapargs (i, j); // (int, int)
print(i, j); // 20, 10
print(x, y); // 11.11, 22.22
swapargs (x, y); //(double, double)
print(x, y); // 22.22, 11.11

}

6/12/2012 Dr. Md. Humayun Kabir5

}

C++ Generic Function with Template

The compiler generates as many different versions
of a template function as requiredof a template function as required
Generic functions are more restricted than
overloaded functions

O l d d f ti lt th i i l i– Overloaded functions can alter their processing logic
– But, a generic function has only a single processing logic for all

data types
We can also write an explicit overload of a templateWe can also write an explicit overload of a template
function

6/12/2012 Dr. Md. Humayun Kabir6

C++ Generic Function with Template

template <class X>
void swapargs(X &a X &b) { cout << “templatevoid swapargs(X &a, X &b) { cout << template

version\n”; }
void swapargs(int &a, int &b) { cout << “int version\n”; }
void main() {void main() {

int i = 10, j = 20;
double x = 11.11, y = 22.22;
swapargs(i, j); // “int version”
swapargs(x, y); // “template version”

}

6/12/2012 Dr. Md. Humayun Kabir7

}

C++ Generic Class with Template

Makes a class data-type independent
Useful when a class contains generalized logicg g

– A generic stack
– A generic queue
– A generic linked list etc. etc. etc.

The actual data type is specified while declaring an object ofThe actual data type is specified while declaring an object of
the class
General form
template <class Ttype1, class Ttype2, …, class TtypeN>
class class-name
{

// body of class
};

6/12/2012 Dr. Md. Humayun Kabir8

}

C++ Generic Class with Template

template <class X>
class stack {class stack {

X stck[10];
int tos;int tos;

public:
void init() { tos = 0; }
void push(X item);
X pop();

}
6/12/2012 Dr. Md. Humayun Kabir9

};

C++ Generic Class with Template

template <class X>
void stack<X>::push(X item) {

if(tos==10){
“S k i f ll” dlcout<<“Stack is full”<<endl;

return;
}}
stck[tos++]=item;

}

6/12/2012 Dr. Md. Humayun Kabir10

}

C++ Generic Class with Template

template <class X>
X stack<X>::pop() {

if(tos==0){
“S k E ” dlcout<<“Stack Empty”<<endl;

return 0;
}}
return stck[--tos];

}

6/12/2012 Dr. Md. Humayun Kabir11

}

C++ Generic Class with Template

int main() {
stack<char> s1 s2;

stack<double> ds1, ds2;
stack<char> s1, s2;
s1.init();
s2.init();
s1 push(‘a’);

ds1.init();
ds2.init();
ds1.push(1.1);

s1.push(a);
s1.push(‘b’);
s2.push(‘x’);
2 h(‘ ’)

ds1.push(2.2);
ds2.push(3.3);
ds2.push(4.4);

s2.push(‘y’);
cout << s1.pop(); // b
cout << s2.pop(); // y

()
cout << ds1.pop(); // 2.2
cout << ds2.pop(); // 4.4

}

6/12/2012 Dr. Md. Humayun Kabir12

}

cout<<“Thank You”<<endl;

cout<<“Have a Good Day”<<endl;

6/12/2012 Dr. Md. Humayun Kabir13

