C++ Templates

Dr. Md. Humayun Kabir
CSE Department, BUET

C++ Templates
.

Templates allows to create a generic function or class for
several data types instead of creating several specific
functions or classes for several data types.

A generic function or class defines a general set of
operations that will be applied to the data (of various
types).

The type of the data is specified as the parameter
whenever a specific version of the function or class for a
specific data type is required.

e Helps programmer to write reusable code
e Helps programmer to write compact code

6/12/2012 Dr. Md. Humayun Kabir

C++ Generic Function with Template

e Template allows to create a function that can
automatically overload itself !!!

e General form

template <class Ttypel, class Ttype2, ..., class TtypeN>
ret-type func-name (param list)

{
// body of function

}

Here,
template is a keyword

We can use keyword “typename” in place of keyword “class”
“TtypeN” is the placeholder for data types used by the function

6/12/2012 Dr. Md. Humayun Kabir

C++ Generic Function with Template
c

template <class X> void swapargs(X &a, X &b) {

X temp;
temp = a;
a=>b;
b = temp;
}
template <class X> void print (X x, X y) {
cout << x << " <<y <<endl,

}

6/12/2012 Dr. Md. Humayun Kabir

C++ Generic Function with Template
c

void main() {
inti=10,] = 20;
double x =11.11, y = 22.22,;
print(i, J); // 10, 20
swapargs (i, J); // (int, int)
print(i, J); // 20, 10
print(x, y); // 11.11, 22.22
swapargs (X, y); //(double, double)
print(x, y); // 22.22, 11.11

6/12/2012 Dr. Md. Humayun Kabir

C++ Generic Function with Template
c

e The compiler generates as many different versions
of a template function as required

e Generic functions are more restricted than
overloaded functions
- Overloaded functions can alter their processing logic
- But, a generic function has only a single processing logic for all
data types
e \We can also write an explicit overload of a template
function

6/12/2012 Dr. Md. Humayun Kabir

C++ Generic Function with Template
c

template <class X>

void swapargs(X &a, X &b) { cout << “template
version\n”; }

void swapargs(int &a, int &b) { cout << “int version\n”; }
void main() {

Inti=10,)= 20;

double x =11.11, y = 22.22,;

swapargs(l, J); // “int version”

swapargs(x, y); // “template version”

}

6/12/2012 Dr. Md. Humayun Kabir

C++ Generic Class with Template

e Makes a class data-type independent

e Useful when a class contains generalized logic
- A generic stack
- A generic queue
— A generic linked list etc. etc. etc.
e The actual data type is specified while declaring an object of
the class
e General form
template <class Ttypel, class Ttype2, ..., class TtypeN>
class class-name

{
// body of class
I3

6/12/2012 Dr. Md. Humayun Kabir

C++ Generic Class with Template
.

template <class X>
class stack {
X stck[10];
Int tos;
public:
void init() {tos =0; }
void push(X item);
} X pop();

6/12/2012 Dr. Md. Humayun Kabir

C++ Generic Class with Template
.

template <class X>
void stack<X>::push(X item) {
if(tos==10){
cout<<"Stack Is full’<<endl;
return;

}

stck[tos++]=item;

}

6/12/2012 Dr. Md. Humayun Kabir

C++ Generic Class with Template
.

template <class X>

X stack<X>::pop() {
If(tos==0){
cout<<“Stack Empty’<<end];
return O;

}

return stck[--tos];

}

6/12/2012 Dr. Md. Humayun Kabir

C++ Generic Class with Template
.

Int main() {

stack<char> s1, s2;
sl.init();

s2.init();
sl.push(‘a’);
sl.push(‘b’);
s2.push(‘x’);
s2.push('y’);

cout << sl.pop();/I'b
cout << s2.pop(); /'y

6/12/2012

stack<double> ds1, ds2;
dsl.init();

ds2.init();

dsl.push(1l.1);
dsl.push(2.2);
ds2.push(3.3);
ds2.push(4.4);

cout << dsl.pop(); // 2.2
cout << ds2.pop(); // 4.4

Dr. Md. Humayun Kabir

cout<<“Thank You” <<endl;
G

cout<<*Have a Good Day”<<end];

6/12/2012 Dr. Md. Humayun Kabir

