C++ Type Casting

Dr. Md. Humayun Kabir
CSE Department, BUET

C++ Type Casting
.

e Converting a value of a given type Iinto
another type is known as type-casting.

e Conversion can be implicit or explicit

6/12/2012 Dr. Md. Humayun Kabir

C++ Implicit Conversion
-

e Implicit conversions do not require any
operator.

e They are automatically performed when a
value Is copied to a compatible type.

6/12/2012 Dr. Md. Humayun Kabir

C++ Implicit Conversion
-

#include <iostream>
using namespace std;
class A {
Int X;
public:
A(int x) {this->x=x;}
int getX() {return x;}
I3
class B{
Int X, y;
public:
B(A a) {x=a.getX(); y=a.getX();}
void getXY(int &x, int &y){x=this->x; y=this->y;}
I3

6/12/2012 Dr. Md. Humayun Kabir

C++ Implicit Conversion
-

Int main(){
INnt X, y;
A a(10);
B b=a;
b.getXY(X,y);
cout<<"x: "<<x<<"y: "<<y<<end|;
return O;

6/12/2012 Dr. Md. Humayun Kabir

C++ Explicit Conversion
-

e Conversions that imply a different
Interpretation of the value, require an explicit
conversion using type cast operator.

B b=(B) a; or B b=B (a);

e Using type cast operators indiscriminately on
classes and pointers to classes can lead to
code that while being syntactically correct
can cause runtime errors.

6/12/2012 Dr. Md. Humayun Kabir

C++ Explicit Conversion
-

#include <iostream>

using namespace std;

class CDummy { float i,j; };

class CAddition {
Int X,y;

public:
CAddition (int a, int b) { x=a; y=Db; }
Int result() { return x+y;}

%

6/12/2012 Dr. Md. Humayun Kabir

C++ Explicit Conversion
-

Int main () {
CDummy d;
CAddition * padd,
padd = (CAddition*) &d,
cout << padd->result();
return O;

6/12/2012 Dr. Md. Humayun Kabir

C++ Explicit Conversion
-

e Traditional explicit type-casting allows to convert any
pointer into any other pointer type, independently of the
types they point to.

e The subsequent call to member function will produce
either a run-time error or a unexpected result.

e In order to control these types of conversions between
classes, there are four specific casting operators:

- dynamic_cast, reinterpret_cast, static_cast
and const_cast.

6/12/2012 Dr. Md. Humayun Kabir

C++ dynamic_cast
.

e dynamic_cast can be used only with
pointers and references to objects.

e Its purpose Is to ensure that the result of the
type conversion is a valid complete object of
the requested class.

e dynamic_cast is always successful when we
cast a class to one of its base classes

6/12/2012 Dr. Md. Humayun Kabir

C++ dynamic_cast
.

class CBase { };

class CDerived: public CBase { };

CBase Db;

CBase* pb;

CDerived d;

CDerived* pd,;

pb = dynamic_cast<CBase*>(&d); // ok: derived-to-base

pd = dynamic_cast<CDerived*>(&b); // wrong: base-to-derived

6/12/2012 Dr. Md. Humayun Kabir

C++ dynamic_cast
.

#include <iostream>

#include <exception>

using namespace std;

class CBase { virtual void dummy() {} };

class CDerived: public CBase {int a; };

int main () {

try {

CBase * pba = new CDerived;
CBase * pbb = new CBase;
CDerived * pd;
pd = dynamic_cast<CDerived*>(pba);
if (pd==0) cout << "Null pointer on first type-cast” << end];
pd = dynamic_cast<CDerived*>(pbb);
if (pd==0) cout << "Null pointer on second type-cast" << endl;

}

catch (exception& e) {cout << "Exception: " << e.what();}
return 0; }

6/12/2012 Dr. Md. Humayun Kabir

C++ dynamic_cast
.

e \When dynamic_cast cannot cast a pointer because it
IS not a complete object of the required class, it returns
a null pointer to indicate the failure.

e If dynamic_cast is used to convert to a reference type
and the conversion is not possible, an exception of
type bad_cast is thrown.

e dynamic_cast can also cast null pointers even
between pointers to unrelated classes.

e can also cast pointers of any type to void pointers
(void*).

6/12/2012 Dr. Md. Humayun Kabir

C++ static cast
c_—

e static_cast can perform conversions between
pointers to related classes, not only from the derived
class to its base, but also from a base class to its
derived.

e ensures that at least the classes are compatible if the
proper object is converted

e but no safety check is performed during runtime to
check if the object being converted is in fact a full
object of the destination type.

e could lead to runtime errors

6/12/2012 Dr. Md. Humayun Kabir

C++ static cast
c_—

class CBase {};

class CDerived: public CBase {};

CBase * a = new CBase;

CDerived * b = static_cast<CDerived*>(a); //OK

6/12/2012 Dr. Md. Humayun Kabir

C++ static cast
c_—

e static_cast can also be used to perform any
other non-pointer conversion that could also
be performed implicitly

e Or any conversion between classes with
explicit constructors or operator functions

6/12/2012 Dr. Md. Humayun Kabir

C++ reinterpret_cast

e reinterpret_cast converts any pointer type to

any other pointer type, even of unrelated
classes.

class A {};

class B {};

A*¥a=newA;

B * b = reinterpret_cast<B*>(a);

6/12/2012 Dr. Md. Humayun Kabir

C++ const_cast

e const_cast manipulates the constness of an
object, either to be set or to be removed.

#include <iostream>
using namespace std;

void print (char * str) { cout << str << endl; }
Int main () {

const char * ¢ = "sample text";
print (const_cast<char *> (c));
return O;

6/12/2012 Dr. Md. Humayun Kabir

C++ typeid
.

e typeid allows to check the type of an expression

e returns a reference to a constant object of type
type info that is defined in the standard header file
<typeinfo>

e This returned value can be compared with another one
using operators == and !=

e can serve to obtain a null-terminated character
sequence representing the data type or class name by
using its name() member

6/12/2012 Dr. Md. Humayun Kabir

C++ typeid

S
#include <iostream>
#include <typeinfo>
using namespace std;
Int main () {
Int * a, b; a=0; b=0;
if (typeid(a) != typeid(b)) {
cout << "a and b are of different types:\n";
cout << "a is: " << typeid(a).name() << '\n’;
cout << "pb is: " << typeid(b).name() << '\n’;
}

return O;

}

6/12/2012 Dr. Md. Humayun Kabir

C++ typeid
.

#include <iostream>
#include <typeinfo>
#include <exception>
using namespace std;
class CBase { virtual void f(){} };
class CDerived : public CBase {};
int main () {
try { CBase* a = new CBase;
CBase* b = new CDerived,
cout << "ais: " << typeid(a).name() << "\n’;
cout << "bis: " << typeid(b).name() << "\n’;
cout << "™*a is: " << typeid(*a).name() << '\n’;
cout << "*p is: " << typeid(*b).name() << '\n’;
}
catch (exception& e) {
cout << "Exception: " << e.what() << endl;

}

return O;

6/12/2012 Dr. Md. Humayun Kabir

C++ conversion function
oo

e A conversion function that belongs to a class X specifies a
conversion from the class type X to the type specified by the
conversion_type.

class Y {
int b;
public:
operator int(){return b;}
I3
void f(Y obj) {
Int i = int(obj);
int j = (int)obj;
intk =1+ obj;
}

6/12/2012 Dr. Md. Humayun Kabir

C++ conversion function restrictions
]

Classes, enumerations, typedef names, function types,
or array types cannot be declared or defined in the
conversion_type.

You cannot use a conversion function to convert an
object of type A to type A, to a base class of A, or to
vold.

Conversion functions have no arguments, and the
return type is implicitly the conversion type.

Conversion functions can be inherited.

You can have virtual conversion functions but not static
ones.

6/12/2012 Dr. Md. Humayun Kabir

cout<<“Thank You” <<endl;
G

cout<<*Have a Good Day”<<end];

6/12/2012 Dr. Md. Humayun Kabir

