
C++ Type CastingC++ Type Casting

Dr. Md. Humayun Kabir
CSE Department, BUET

C++ Type Casting

Converting a value of a given type into
th t i k t tianother type is known as type-casting.

Conversion can be implicit or explicit

6/12/2012 Dr. Md. Humayun Kabir2

C++ Implicit Conversion

Implicit conversions do not require any
toperator.

They are automatically performed when a
l i i d t tibl tvalue is copied to a compatible type.

6/12/2012 Dr. Md. Humayun Kabir3

C++ Implicit Conversion

#include <iostream>
using namespace std;
class A {

int x;
public:

A(int x) {this->x=x;}A(int x) {this >x x;}
int getX() {return x;}

};
class B{

i tint x, y;
public:

B(A a) {x=a.getX(); y=a.getX();}
void getXY(int &x, int &y){x=this->x; y=this->y;}

6/12/2012 Dr. Md. Humayun Kabir4

g (, y){ ; y y;}
};

C++ Implicit Conversion

int main(){
int x y;int x, y;
A a(10);
B b=a;
b tXY()b.getXY(x,y);
cout<<"x: "<<x<<" y: "<<y<<endl;
return 0;

}

6/12/2012 Dr. Md. Humayun Kabir5

C++ Explicit Conversion

Conversions that imply a different
interpretation of the value require an explicitinterpretation of the value, require an explicit
conversion using type cast operator.

B b (B) B b B ()B b=(B) a; or B b=B (a);
Using type cast operators indiscriminately on
classes and pointers to classes can lead toclasses and pointers to classes can lead to
code that while being syntactically correct
can cause runtime errors.

6/12/2012 Dr. Md. Humayun Kabir6

C++ Explicit Conversion

#include <iostream>
using namespace std;using namespace std;
class CDummy { float i,j; };
class CAddition { {

int x,y;
public:

CAdditi (i t i t b) { b }CAddition (int a, int b) { x=a; y=b; }
int result() { return x+y;}

};

6/12/2012 Dr. Md. Humayun Kabir7

};

C++ Explicit Conversion

int main () {
CDummy d;
CAddition * padd;
padd = (CAddition*) &d;
cout << padd->result();
return 0;

}

6/12/2012 Dr. Md. Humayun Kabir8

}

C++ Explicit Conversion

Traditional explicit type-casting allows to convert any
pointer into any other pointer type independently of thepointer into any other pointer type, independently of the
types they point to.
The subsequent call to member function will produce
ith ti t d lteither a run-time error or a unexpected result.

In order to control these types of conversions between
classes, there are four specific casting operators:
– dynamic_cast, reinterpret_cast, static_cast

and const_cast.

6/12/2012 Dr. Md. Humayun Kabir9

C++ dynamic_cast

dynamic_cast can be used only with
i t d f t bj tpointers and references to objects.

Its purpose is to ensure that the result of the
t i i lid l t bj t ftype conversion is a valid complete object of
the requested class.
dynamic cast is always successful when wedynamic_cast is always successful when we
cast a class to one of its base classes

6/12/2012 Dr. Md. Humayun Kabir10

C++ dynamic_cast

class CBase { };
class CDerived: public CBase { };class CDerived: public CBase { };
CBase b;
CBase* pb; p ;
CDerived d;
CDerived* pd;
b d i t CB * (&d)pb = dynamic_cast<CBase*>(&d); // ok: derived-to-base

pd = dynamic_cast<CDerived*>(&b); // wrong: base-to-derived

6/12/2012 Dr. Md. Humayun Kabir11

C++ dynamic_cast

#include <iostream>
#include <exception>
using namespace std;using namespace std;
class CBase { virtual void dummy() {} };
class CDerived: public CBase { int a; };
int main () {

try {
CB * b CD i dCBase * pba = new CDerived;
CBase * pbb = new CBase;
CDerived * pd;
pd = dynamic_cast<CDerived*>(pba);
if (pd==0) cout << "Null pointer on first type-cast" << endl; (p) p yp ;
pd = dynamic_cast<CDerived*>(pbb);
if (pd==0) cout << "Null pointer on second type-cast" << endl;

}
catch (exception& e) {cout << "Exception: " << e.what();}
return 0; }

6/12/2012 Dr. Md. Humayun Kabir12

return 0; }

C++ dynamic_cast

When dynamic_cast cannot cast a pointer because it
is not a complete object of the required class it returnsis not a complete object of the required class, it returns
a null pointer to indicate the failure.
If dynamic_cast is used to convert to a reference type
and the conversion is not possible an exception ofand the conversion is not possible, an exception of
type bad_cast is thrown.
dynamic_cast can also cast null pointers even
between pointers to unrelated classes.
can also cast pointers of any type to void pointers
(void*).

6/12/2012 Dr. Md. Humayun Kabir13

()

C++ static_cast

static_cast can perform conversions between
pointers to related classes not only from the derivedpointers to related classes, not only from the derived
class to its base, but also from a base class to its
derived.
ensures that at least the classes are compatible if theensures that at least the classes are compatible if the
proper object is converted
but no safety check is performed during runtime to
check if the object being converted is in fact a full
object of the destination type.
could lead to runtime errors

6/12/2012 Dr. Md. Humayun Kabir14

C++ static_cast

class CBase {};
class CDerived: public CBase {};
CBase * a = new CBase;
CDerived * b = static_cast<CDerived*>(a); //OK

6/12/2012 Dr. Md. Humayun Kabir15

C++ static_cast

static_cast can also be used to perform any
th i t i th t ld lother non-pointer conversion that could also

be performed implicitly
O i b t l ithOr any conversion between classes with
explicit constructors or operator functions

6/12/2012 Dr. Md. Humayun Kabir16

C++ reinterpret_cast

reinterpret_cast converts any pointer type to
th i t t f l t dany other pointer type, even of unrelated

classes.

class A {};
class B {};
A * AA * a = new A;
B * b = reinterpret_cast<B*>(a);

6/12/2012 Dr. Md. Humayun Kabir17

C++ const_cast

const_cast manipulates the constness of an
bj t ith t b t t b dobject, either to be set or to be removed.

#include <iostream>
using namespace std;using namespace std;

void print (char * str) { cout << str << endl; }
int main () {int main () {

const char * c = "sample text";
print (const_cast<char *> (c));
return 0;

6/12/2012 Dr. Md. Humayun Kabir18

;
}

C++ typeid

typeid allows to check the type of an expression
t f t t t bj t f treturns a reference to a constant object of type

type_info that is defined in the standard header file
<typeinfo>yp
This returned value can be compared with another one
using operators == and !=
can serve to obtain a null-terminated character
sequence representing the data type or class name by
using its name() member

6/12/2012 Dr. Md. Humayun Kabir19

g ()

C++ typeid

#include <iostream>
#include <typeinfo>yp
using namespace std;
int main () {

int * a, b; a=0; b=0;
if (typeid(a) != typeid(b)) {

cout << "a and b are of different types:\n";
cout << "a is: " << typeid(a).name() << '\n';

t << "b i " << t id(b) () << '\ 'cout << "b is: " << typeid(b).name() << '\n';
}

return 0;
}

6/12/2012 Dr. Md. Humayun Kabir20

}

C++ typeid

#include <iostream>
#include <typeinfo>
#include <exception>#include <exception>
using namespace std;
class CBase { virtual void f(){} };
class CDerived : public CBase {};
int main () {

t { CB * CBtry { CBase* a = new CBase;
CBase* b = new CDerived;
cout << "a is: " << typeid(a).name() << '\n';
cout << "b is: " << typeid(b).name() << '\n';
cout << "*a is: " << typeid(*a).name() << '\n'; yp () () ;
cout << "*b is: " << typeid(*b).name() << '\n';

}
catch (exception& e) {

cout << "Exception: " << e.what() << endl;
}

6/12/2012 Dr. Md. Humayun Kabir21

}
return 0;

}

C++ conversion function

A conversion function that belongs to a class X specifies a
conversion from the class type X to the type specified by the

i tconversion_type.

class Y {
int b;

public:
operator int(){return b;}

};
void f(Y obj) {void f(Y obj) {

int i = int(obj);
int j = (int)obj;
int k = i + obj;

6/12/2012 Dr. Md. Humayun Kabir22
}

C++ conversion function restrictions

Classes, enumerations, typedef names, function types,
or array types cannot be declared or defined in theor array types cannot be declared or defined in the
conversion_type.
You cannot use a conversion function to convert an
object of type A to type A to a base class of A or toobject of type A to type A, to a base class of A, or to
void.
Conversion functions have no arguments, and the
return type is implicitly the conversion typereturn type is implicitly the conversion type.
Conversion functions can be inherited.
You can have virtual conversion functions but not static

6/12/2012 Dr. Md. Humayun Kabir23
ones.

cout<<“Thank You”<<endl;

cout<<“Have a Good Day”<<endl;

6/12/2012 Dr. Md. Humayun Kabir24

